Alon Eirew


2019

pdf bib
Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution
Shany Barhom | Vered Shwartz | Alon Eirew | Michael Bugert | Nils Reimers | Ido Dagan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task’s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model’s success.

2018

pdf bib
Term Set Expansion based NLP Architect by Intel AI Lab
Jonathan Mamou | Oren Pereg | Moshe Wasserblat | Alon Eirew | Yael Green | Shira Guskin | Peter Izsak | Daniel Korat
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to-end workflow. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used successfully in real-life use cases including integration into an automated recruitment system and an issues and defects resolution system.

pdf bib
SetExpander: End-to-end Term Set Expansion Based on Multi-Context Term Embeddings
Jonathan Mamou | Oren Pereg | Moshe Wasserblat | Ido Dagan | Yoav Goldberg | Alon Eirew | Yael Green | Shira Guskin | Peter Izsak | Daniel Korat
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to end workflow for term set expansion. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used for solving real-life use cases including integration in an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv .