Alina Karakanta


2020

pdf bib
MuST-Cinema: a Speech-to-Subtitles corpus
Alina Karakanta | Matteo Negri | Marco Turchi
Proceedings of the 12th Language Resources and Evaluation Conference

Growing needs in localising audiovisual content in multiple languages through subtitles call for the development of automatic solutions for human subtitling. Neural Machine Translation (NMT) can contribute to the automatisation of subtitling, facilitating the work of human subtitlers and reducing turn-around times and related costs. NMT requires high-quality, large, task-specific training data. The existing subtitling corpora, however, are missing both alignments to the source language audio and important information about subtitle breaks. This poses a significant limitation for developing efficient automatic approaches for subtitling, since the length and form of a subtitle directly depends on the duration of the utterance. In this work, we present MuST-Cinema, a multilingual speech translation corpus built from TED subtitles. The corpus is comprised of (audio, transcription, translation) triplets. Subtitle breaks are preserved by inserting special symbols. We show that the corpus can be used to build models that efficiently segment sentences into subtitles and propose a method for annotating existing subtitling corpora with subtitle breaks, conforming to the constraint of length.

pdf bib
Is 42 the Answer to Everything in Subtitling-oriented Speech Translation?
Alina Karakanta | Matteo Negri | Marco Turchi
Proceedings of the 17th International Conference on Spoken Language Translation

Subtitling is becoming increasingly important for disseminating information, given the enormous amounts of audiovisual content becoming available daily. Although Neural Machine Translation (NMT) can speed up the process of translating audiovisual content, large manual effort is still required for transcribing the source language, and for spotting and segmenting the text into proper subtitles. Creating proper subtitles in terms of timing and segmentation highly depends on information present in the audio (utterance duration, natural pauses). In this work, we explore two methods for applying Speech Translation (ST) to subtitling, a) a direct end-to-end and b) a classical cascade approach. We discuss the benefit of having access to the source language speech for improving the conformity of the generated subtitles to the spatial and temporal subtitling constraints and show that length is not the answer to everything in the case of subtitling-oriented ST.

pdf bib
The Two Shades of Dubbing in Neural Machine Translation
Alina Karakanta | Supratik Bhattacharya | Shravan Nayak | Timo Baumann | Matteo Negri | Marco Turchi
Proceedings of the 28th International Conference on Computational Linguistics

Dubbing has two shades; synchronisation constraints are applied only when the actor’s mouth is visible on screen, while the translation is unconstrained for off-screen dubbing. Consequently, different synchronisation requirements, and therefore translation strategies, are applied depending on the type of dubbing. In this work, we manually annotate an existing dubbing corpus (Heroes) for this dichotomy. We show that, even though we did not observe distinctive features between on- and off-screen dubbing at the textual level, on-screen dubbing is more difficult for MT (-4 BLEU points). Moreover, synchronisation constraints dramatically decrease translation quality for off-screen dubbing. We conclude that, distinguishing between on-screen and off-screen dubbing is necessary for determining successful strategies for dubbing-customised Machine Translation.

2019

pdf bib
Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages
Alina Karakanta | Atul Kr. Ojha | Chao-Hong Liu | Jonathan Washington | Nathaniel Oco | Surafel Melaku Lakew | Valentin Malykh | Xiaobing Zhao
Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages

2016

pdf bib
Using Related Languages to Enhance Statistical Language Models
Anna Currey | Alina Karakanta | Jon Dehdari
Proceedings of the NAACL Student Research Workshop