Alex Waibel

Also published as: A. Waibel, Alexander Waibel


2020

pdf bib
DaCToR: A Data Collection Tool for the RELATER Project
Juan Hussain | Oussama Zenkri | Sebastian Stüker | Alex Waibel
Proceedings of the 12th Language Resources and Evaluation Conference

Collecting domain-specific data for under-resourced languages, e.g., dialects of languages, can be very expensive, potentially financially prohibitive and taking long time. Moreover, in the case of rarely written languages, the normalization of non-canonical transcription might be another time consuming but necessary task. In order to collect domain-specific data in such circumstances in a time and cost-efficient way, collecting read data of pre-prepared texts is often a viable option. In order to collect data in the domain of psychiatric diagnosis in Arabic dialects for the project RELATER, we have prepared the data collection tool DaCToR for collecting read texts by speakers in the respective countries and districts in which the dialects are spoken. In this paper we describe our tool, its purpose within the project RELATER and the dialects which we have started to collect with the tool.

pdf bib
Proceedings of the 17th International Conference on Spoken Language Translation
Marcello Federico | Alex Waibel | Kevin Knight | Satoshi Nakamura | Hermann Ney | Jan Niehues | Sebastian Stüker | Dekai Wu | Joseph Mariani | Francois Yvon
Proceedings of the 17th International Conference on Spoken Language Translation

pdf bib
FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN
Ebrahim Ansari | Amittai Axelrod | Nguyen Bach | Ondřej Bojar | Roldano Cattoni | Fahim Dalvi | Nadir Durrani | Marcello Federico | Christian Federmann | Jiatao Gu | Fei Huang | Kevin Knight | Xutai Ma | Ajay Nagesh | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Xing Shi | Sebastian Stüker | Marco Turchi | Alexander Waibel | Changhan Wang
Proceedings of the 17th International Conference on Spoken Language Translation

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2020) featured this year six challenge tracks: (i) Simultaneous speech translation, (ii) Video speech translation, (iii) Offline speech translation, (iv) Conversational speech translation, (v) Open domain translation, and (vi) Non-native speech translation. A total of teams participated in at least one of the tracks. This paper introduces each track’s goal, data and evaluation metrics, and reports the results of the received submissions.

pdf bib
KIT’s IWSLT 2020 SLT Translation System
Ngoc-Quan Pham | Felix Schneider | Tuan-Nam Nguyen | Thanh-Le Ha | Thai Son Nguyen | Maximilian Awiszus | Sebastian Stüker | Alexander Waibel
Proceedings of the 17th International Conference on Spoken Language Translation

This paper describes KIT’s submissions to the IWSLT2020 Speech Translation evaluation campaign. We first participate in the simultaneous translation task, in which our simultaneous models are Transformer based and can be efficiently trained to obtain low latency with minimized compromise in quality. On the offline speech translation task, we applied our new Speech Transformer architecture to end-to-end speech translation. The obtained model can provide translation quality which is competitive to a complicated cascade. The latter still has the upper hand, thanks to the ability to transparently access to the transcription, and resegment the inputs to avoid fragmentation.

pdf bib
Towards Stream Translation: Adaptive Computation Time for Simultaneous Machine Translation
Felix Schneider | Alexander Waibel
Proceedings of the 17th International Conference on Spoken Language Translation

Simultaneous machine translation systems rely on a policy to schedule read and write operations in order to begin translating a source sentence before it is complete. In this paper, we demonstrate the use of Adaptive Computation Time (ACT) as an adaptive, learned policy for simultaneous machine translation using the transformer model and as a more numerically stable alternative to Monotonic Infinite Lookback Attention (MILk). We achieve state-of-the-art results in terms of latency-quality tradeoffs. We also propose a method to use our model on unsegmented input, i.e. without sentence boundaries, simulating the condition of translating output from automatic speech recognition. We present first benchmark results on this task.

pdf bib
German-Arabic Speech-to-Speech Translation for Psychiatric Diagnosis
Juan Hussain | Mohammed Mediani | Moritz Behr | M. Amin Cheragui | Sebastian Stüker | Alexander Waibel
Proceedings of the Fifth Arabic Natural Language Processing Workshop

In this paper we present the natural language processing components of our German-Arabic speech-to-speech translation system which is being deployed in the context of interpretation during psychiatric, diagnostic interviews. For this purpose we have built a pipe-lined speech-to-speech translation system consisting of automatic speech recognition, text post-processing/segmentation, machine translation and speech synthesis systems. We have implemented two pipe-lines, from German to Arabic and Arabic to German, in order to be able to conduct interpreted two-way dialogues between psychiatrists and potential patients. All systems in our pipeline have been realized as all-neural end-to-end systems, using different architectures suitable for the different components. The speech recognition systems use an encoder/decoder + attention architecture, the text segmentation component and the machine translation system are based on the Transformer architecture, and for the speech synthesis systems we use Tacotron 2 for generating spectrograms and WaveGlow as vocoder. The speech translation is deployed in a server-based speech translation application that implements a turn based translation between a German speaking psychiatrist administrating the Mini-International Neuropsychiatric Interview (M.I.N.I.) and an Arabic speaking person answering the interview. As this is a very specific domain, in addition to the linguistic challenges posed by translating between Arabic and German, we also focus in this paper on the methods we implemented for adapting our speech translation system to the domain of this psychiatric interview.

pdf bib
Removing European Language Barriers with Innovative Machine Translation Technology
Dario Franceschini | Chiara Canton | Ivan Simonini | Armin Schweinfurth | Adelheid Glott | Sebastian Stüker | Thai-Son Nguyen | Felix Schneider | Thanh-Le Ha | Alex Waibel | Barry Haddow | Philip Williams | Rico Sennrich | Ondřej Bojar | Sangeet Sagar | Dominik Macháček | Otakar Smrž
Proceedings of the 1st International Workshop on Language Technology Platforms

This paper presents our progress towards deploying a versatile communication platform in the task of highly multilingual live speech translation for conferences and remote meetings live subtitling. The platform has been designed with a focus on very low latency and high flexibility while allowing research prototypes of speech and text processing tools to be easily connected, regardless of where they physically run. We outline our architecture solution and also briefly compare it with the ELG platform. Technical details are provided on the most important components and we summarize the test deployment events we ran so far.

pdf bib
Incorporating External Annotation to improve Named Entity Translation in NMT
Maciej Modrzejewski | Miriam Exel | Bianka Buschbeck | Thanh-Le Ha | Alexander Waibel
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

The correct translation of named entities (NEs) still poses a challenge for conventional neural machine translation (NMT) systems. This study explores methods incorporating named entity recognition (NER) into NMT with the aim to improve named entity translation. It proposes an annotation method that integrates named entities and inside–outside–beginning (IOB) tagging into the neural network input with the use of source factors. Our experiments on English→German and English→ Chinese show that just by including different NE classes and IOB tagging, we can increase the BLEU score by around 1 point using the standard test set from WMT2019 and achieve up to 12% increase in NE translation rates over a strong baseline.

pdf bib
ELITR: European Live Translator
Ondřej Bojar | Dominik Macháček | Sangeet Sagar | Otakar Smrž | Jonáš Kratochvíl | Ebrahim Ansari | Dario Franceschini | Chiara Canton | Ivan Simonini | Thai-Son Nguyen | Felix Schneider | Sebastian Stücker | Alex Waibel | Barry Haddow | Rico Sennrich | Philip Williams
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

ELITR (European Live Translator) project aims to create a speech translation system for simultaneous subtitling of conferences and online meetings targetting up to 43 languages. The technology is tested by the Supreme Audit Office of the Czech Republic and by alfaview®, a German online conferencing system. Other project goals are to advance document-level and multilingual machine translation, automatic speech recognition, and automatic minuting.

2019

pdf bib
Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation
Matthias Sperber | Graham Neubig | Jan Niehues | Alex Waibel
Transactions of the Association for Computational Linguistics, Volume 7

Speech translation has traditionally been approached through cascaded models consisting of a speech recognizer trained on a corpus of transcribed speech, and a machine translation system trained on parallel texts. Several recent works have shown the feasibility of collapsing the cascade into a single, direct model that can be trained in an end-to-end fashion on a corpus of translated speech. However, experiments are inconclusive on whether the cascade or the direct model is stronger, and have only been conducted under the unrealistic assumption that both are trained on equal amounts of data, ignoring other available speech recognition and machine translation corpora. In this paper, we demonstrate that direct speech translation models require more data to perform well than cascaded models, and although they allow including auxiliary data through multi-task training, they are poor at exploiting such data, putting them at a severe disadvantage. As a remedy, we propose the use of end- to-end trainable models with two attention mechanisms, the first establishing source speech to source text alignments, the second modeling source to target text alignment. We show that such models naturally decompose into multi-task–trainable recognition and translation tasks and propose an attention-passing technique that alleviates error propagation issues in a previous formulation of a model with two attention stages. Our proposed model outperforms all examined baselines and is able to exploit auxiliary training data much more effectively than direct attentional models.

pdf bib
Incremental processing of noisy user utterances in the spoken language understanding task
Stefan Constantin | Jan Niehues | Alex Waibel
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

The state-of-the-art neural network architectures make it possible to create spoken language understanding systems with high quality and fast processing time. One major challenge for real-world applications is the high latency of these systems caused by triggered actions with high executions times. If an action can be separated into subactions, the reaction time of the systems can be improved through incremental processing of the user utterance and starting subactions while the utterance is still being uttered. In this work, we present a model-agnostic method to achieve high quality in processing incrementally produced partial utterances. Based on clean and noisy versions of the ATIS dataset, we show how to create datasets with our method to create low-latency natural language understanding components. We get improvements of up to 47.91 absolute percentage points in the metric F1-score.

pdf bib
Self-Attentional Models for Lattice Inputs
Matthias Sperber | Graham Neubig | Ngoc-Quan Pham | Alex Waibel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Lattices are an efficient and effective method to encode ambiguity of upstream systems in natural language processing tasks, for example to compactly capture multiple speech recognition hypotheses, or to represent multiple linguistic analyses. Previous work has extended recurrent neural networks to model lattice inputs and achieved improvements in various tasks, but these models suffer from very slow computation speeds. This paper extends the recently proposed paradigm of self-attention to handle lattice inputs. Self-attention is a sequence modeling technique that relates inputs to one another by computing pairwise similarities and has gained popularity for both its strong results and its computational efficiency. To extend such models to handle lattices, we introduce probabilistic reachability masks that incorporate lattice structure into the model and support lattice scores if available. We also propose a method for adapting positional embeddings to lattice structures. We apply the proposed model to a speech translation task and find that it outperforms all examined baselines while being much faster to compute than previous neural lattice models during both training and inference.

pdf bib
Paraphrases as Foreign Languages in Multilingual Neural Machine Translation
Zhong Zhou | Matthias Sperber | Alexander Waibel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Paraphrases, rewordings of the same semantic meaning, are useful for improving generalization and translation. Unlike previous works that only explore paraphrases at the word or phrase level, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train on parallel paraphrases in the style of multilingual Neural Machine Translation (NMT). Our multi-paraphrase NMT that trains only on two languages outperforms the multilingual baselines. Adding paraphrases improves the rare word translation and increases entropy and diversity in lexical choice. Adding the source paraphrases boosts performance better than adding the target ones, while adding both lifts performance further. We achieve a BLEU score of 57.2 for French-to-English translation using 24 corpus-level paraphrases of the Bible, which outperforms the multilingual baselines and is +34.7 above the single-source single-target NMT baseline.

pdf bib
Improving Zero-shot Translation with Language-Independent Constraints
Ngoc-Quan Pham | Jan Niehues | Thanh-Le Ha | Alexander Waibel
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

An important concern in training multilingual neural machine translation (NMT) is to translate between language pairs unseen during training, i.e zero-shot translation. Improving this ability kills two birds with one stone by providing an alternative to pivot translation which also allows us to better understand how the model captures information between languages. In this work, we carried out an investigation on this capability of the multilingual NMT models. First, we intentionally create an encoder architecture which is independent with respect to the source language. Such experiments shed light on the ability of NMT encoders to learn multilingual representations, in general. Based on such proof of concept, we were able to design regularization methods into the standard Transformer model, so that the whole architecture becomes more robust in zero-shot conditions. We investigated the behaviour of such models on the standard IWSLT 2017 multilingual dataset. We achieved an average improvement of 2.23 BLEU points across 12 language pairs compared to the zero-shot performance of a state-of-the-art multilingual system. Additionally, we carry out further experiments in which the effect is confirmed even for language pairs with multiple intermediate pivots.

pdf bib
Fluent Translations from Disfluent Speech in End-to-End Speech Translation
Elizabeth Salesky | Matthias Sperber | Alexander Waibel
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Spoken language translation applications for speech suffer due to conversational speech phenomena, particularly the presence of disfluencies. With the rise of end-to-end speech translation models, processing steps such as disfluency removal that were previously an intermediate step between speech recognition and machine translation need to be incorporated into model architectures. We use a sequence-to-sequence model to translate from noisy, disfluent speech to fluent text with disfluencies removed using the recently collected ‘copy-edited’ references for the Fisher Spanish-English dataset. We are able to directly generate fluent translations and introduce considerations about how to evaluate success on this task. This work provides a baseline for a new task, implicitly removing disfluencies in end-to-end translation of conversational speech.

2018

pdf bib
Automated Evaluation of Out-of-Context Errors
Patrick Huber | Jan Niehues | Alex Waibel
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
BULBasaa: A Bilingual Basaa-French Speech Corpus for the Evaluation of Language Documentation Tools
Fatima Hamlaoui | Emmanuel-Moselly Makasso | Markus Müller | Jonas Engelmann | Gilles Adda | Alex Waibel | Sebastian Stüker
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
KIT-Multi: A Translation-Oriented Multilingual Embedding Corpus
Thanh-Le Ha | Jan Niehues | Matthias Sperber | Ngoc Quan Pham | Alexander Waibel
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
KIT Lecture Translator: Multilingual Speech Translation with One-Shot Learning
Florian Dessloch | Thanh-Le Ha | Markus Müller | Jan Niehues | Thai-Son Nguyen | Ngoc-Quan Pham | Elizabeth Salesky | Matthias Sperber | Sebastian Stüker | Thomas Zenkel | Alexander Waibel
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

In today’s globalized world we have the ability to communicate with people across the world. However, in many situations the language barrier still presents a major issue. For example, many foreign students coming to KIT to study are initially unable to follow a lecture in German. Therefore, we offer an automatic simultaneous interpretation service for students. To fulfill this task, we have developed a low-latency translation system that is adapted to lectures and covers several language pairs. While the switch from traditional Statistical Machine Translation to Neural Machine Translation (NMT) significantly improved performance, to integrate NMT into the speech translation framework required several adjustments. We have addressed the run-time constraints and different types of input. Furthermore, we utilized one-shot learning to easily add new topic-specific terms to the system. Besides better performance, NMT also enabled us increase our covered languages through multilingual NMT. % Combining these techniques, we are able to provide an adapted speech translation system for several European languages.

pdf bib
Robust and Scalable Differentiable Neural Computer for Question Answering
Jörg Franke | Jan Niehues | Alex Waibel
Proceedings of the Workshop on Machine Reading for Question Answering

Deep learning models are often not easily adaptable to new tasks and require task-specific adjustments. The differentiable neural computer (DNC), a memory-augmented neural network, is designed as a general problem solver which can be used in a wide range of tasks. But in reality, it is hard to apply this model to new tasks. We analyze the DNC and identify possible improvements within the application of question answering. This motivates a more robust and scalable DNC (rsDNC). The objective precondition is to keep the general character of this model intact while making its application more reliable and speeding up its required training time. The rsDNC is distinguished by a more robust training, a slim memory unit and a bidirectional architecture. We not only achieve new state-of-the-art performance on the bAbI task, but also minimize the performance variance between different initializations. Furthermore, we demonstrate the simplified applicability of the rsDNC to new tasks with passable results on the CNN RC task without adaptions.

pdf bib
Towards one-shot learning for rare-word translation with external experts
Ngoc-Quan Pham | Jan Niehues | Alexander Waibel
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation

Neural machine translation (NMT) has significantly improved the quality of automatic translation models. One of the main challenges in current systems is the translation of rare words. We present a generic approach to address this weakness by having external models annotate the training data as Experts, and control the model-expert interaction with a pointer network and reinforcement learning. Our experiments using phrase-based models to simulate Experts to complement neural machine translation models show that the model can be trained to copy the annotations into the output consistently. We demonstrate the benefit of our proposed framework in outof domain translation scenarios with only lexical resources, improving more than 1.0 BLEU point in both translation directions English-Spanish and German-English.

pdf bib
Massively Parallel Cross-Lingual Learning in Low-Resource Target Language Translation
Zhong Zhou | Matthias Sperber | Alexander Waibel
Proceedings of the Third Conference on Machine Translation: Research Papers

We work on translation from rich-resource languages to low-resource languages. The main challenges we identify are the lack of low-resource language data, effective methods for cross-lingual transfer, and the variable-binding problem that is common in neural systems. We build a translation system that addresses these challenges using eight European language families as our test ground. Firstly, we add the source and the target family labels and study intra-family and inter-family influences for effective cross-lingual transfer. We achieve an improvement of +9.9 in BLEU score for English-Swedish translation using eight families compared to the single-family multi-source multi-target baseline. Moreover, we find that training on two neighboring families closest to the low-resource language is often enough. Secondly, we construct an ablation study and find that reasonably good results can be achieved even with considerably less target data. Thirdly, we address the variable-binding problem by building an order-preserving named entity translation model. We obtain 60.6% accuracy in qualitative evaluation where our translations are akin to human translations in a preliminary study.

pdf bib
The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018
Ngoc-Quan Pham | Jan Niehues | Alexander Waibel
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

We present our experiments in the scope of the news translation task in WMT 2018, in directions: English→German. The core of our systems is the encoder-decoder based neural machine translation models using the transformer architecture. We enhanced the model with a deeper architecture. By using techniques to limit the memory consumption, we were able to train models that are 4 times larger on one GPU and improve the performance by 1.2 BLEU points. Furthermore, we performed sentence selection for the newly available ParaCrawl corpus. Thereby, we could improve the effectiveness of the corpus by 0.5 BLEU points.

2017

pdf bib
Analyzing Neural MT Search and Model Performance
Jan Niehues | Eunah Cho | Thanh-Le Ha | Alex Waibel
Proceedings of the First Workshop on Neural Machine Translation

In this paper, we offer an in-depth analysis about the modeling and search performance. We address the question if a more complex search algorithm is necessary. Furthermore, we investigate the question if more complex models which might only be applicable during rescoring are promising. By separating the search space and the modeling using n-best list reranking, we analyze the influence of both parts of an NMT system independently. By comparing differently performing NMT systems, we show that the better translation is already in the search space of the translation systems with less performance. This results indicate that the current search algorithms are sufficient for the NMT systems. Furthermore, we could show that even a relatively small n-best list of 50 hypotheses already contain notably better translations.

pdf bib
The QT21 Combined Machine Translation System for English to Latvian
Jan-Thorsten Peter | Hermann Ney | Ondřej Bojar | Ngoc-Quan Pham | Jan Niehues | Alex Waibel | Franck Burlot | François Yvon | Mārcis Pinnis | Valters Šics | Jasmijn Bastings | Miguel Rios | Wilker Aziz | Philip Williams | Frédéric Blain | Lucia Specia
Proceedings of the Second Conference on Machine Translation

pdf bib
The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2017
Ngoc-Quan Pham | Jan Niehues | Thanh-Le Ha | Eunah Cho | Matthias Sperber | Alexander Waibel
Proceedings of the Second Conference on Machine Translation

pdf bib
Neural Lattice-to-Sequence Models for Uncertain Inputs
Matthias Sperber | Graham Neubig | Jan Niehues | Alex Waibel
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The input to a neural sequence-to-sequence model is often determined by an up-stream system, e.g. a word segmenter, part of speech tagger, or speech recognizer. These up-stream models are potentially error-prone. Representing inputs through word lattices allows making this uncertainty explicit by capturing alternative sequences and their posterior probabilities in a compact form. In this work, we extend the TreeLSTM (Tai et al., 2015) into a LatticeLSTM that is able to consume word lattices, and can be used as encoder in an attentional encoder-decoder model. We integrate lattice posterior scores into this architecture by extending the TreeLSTM’s child-sum and forget gates and introducing a bias term into the attention mechanism. We experiment with speech translation lattices and report consistent improvements over baselines that translate either the 1-best hypothesis or the lattice without posterior scores.

2016

pdf bib
Evaluation of the KIT Lecture Translation System
Markus Müller | Sarah Fünfer | Sebastian Stüker | Alex Waibel
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

To attract foreign students is among the goals of the Karlsruhe Institute of Technology (KIT). One obstacle to achieving this goal is that lectures at KIT are usually held in German which many foreign students are not sufficiently proficient in, as, e.g., opposed to English. While the students from abroad are learning German during their stay at KIT, it is challenging to become proficient enough in it in order to follow a lecture. As a solution to this problem we offer our automatic simultaneous lecture translation. It translates German lectures into English in real time. While not as good as human interpreters, the system is available at a price that KIT can afford in order to offer it in potentially all lectures. In order to assess whether the quality of the system we have conducted a user study. In this paper we present this study, the way it was conducted and its results. The results indicate that the quality of the system has passed a threshold as to be able to support students in their studies. The study has helped to identify the most crucial weaknesses of the systems and has guided us which steps to take next.

pdf bib
Optimizing Computer-Assisted Transcription Quality with Iterative User Interfaces
Matthias Sperber | Graham Neubig | Satoshi Nakamura | Alex Waibel
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Computer-assisted transcription promises high-quality speech transcription at reduced costs. This is achieved by limiting human effort to transcribing parts for which automatic transcription quality is insufficient. Our goal is to improve the human transcription quality via appropriate user interface design. We focus on iterative interfaces that allow humans to solve tasks based on an initially given suggestion, in this case an automatic transcription. We conduct a user study that reveals considerable quality gains for three variations of iterative interfaces over a non-iterative from-scratch transcription interface. Our iterative interfaces included post-editing, confidence-enhanced post-editing, and a novel retyping interface. All three yielded similar quality on average, but we found that the proposed retyping interface was less sensitive to the difficulty of the segment, and superior when the automatic transcription of the segment contained relatively many errors. An analysis using mixed-effects models allows us to quantify these and other factors and draw conclusions over which interface design should be chosen in which circumstance.

pdf bib
Lecture Translator - Speech translation framework for simultaneous lecture translation
Markus Müller | Thai Son Nguyen | Jan Niehues | Eunah Cho | Bastian Krüger | Thanh-Le Ha | Kevin Kilgour | Matthias Sperber | Mohammed Mediani | Sebastian Stüker | Alex Waibel
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

pdf bib
Pre-Translation for Neural Machine Translation
Jan Niehues | Eunah Cho | Thanh-Le Ha | Alex Waibel
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Recently, the development of neural machine translation (NMT) has significantly improved the translation quality of automatic machine translation. While most sentences are more accurate and fluent than translations by statistical machine translation (SMT)-based systems, in some cases, the NMT system produces translations that have a completely different meaning. This is especially the case when rare words occur. When using statistical machine translation, it has already been shown that significant gains can be achieved by simplifying the input in a preprocessing step. A commonly used example is the pre-reordering approach. In this work, we used phrase-based machine translation to pre-translate the input into the target language. Then a neural machine translation system generates the final hypothesis using the pre-translation. Thereby, we use either only the output of the phrase-based machine translation (PBMT) system or a combination of the PBMT output and the source sentence. We evaluate the technique on the English to German translation task. Using this approach we are able to outperform the PBMT system as well as the baseline neural MT system by up to 2 BLEU points. We analyzed the influence of the quality of the initial system on the final result.

pdf bib
Lightly Supervised Quality Estimation
Matthias Sperber | Graham Neubig | Jan Niehues | Sebastian Stüker | Alex Waibel
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Evaluating the quality of output from language processing systems such as machine translation or speech recognition is an essential step in ensuring that they are sufficient for practical use. However, depending on the practical requirements, evaluation approaches can differ strongly. Often, reference-based evaluation measures (such as BLEU or WER) are appealing because they are cheap and allow rapid quantitative comparison. On the other hand, practitioners often focus on manual evaluation because they must deal with frequently changing domains and quality standards requested by customers, for which reference-based evaluation is insufficient or not possible due to missing in-domain reference data (Harris et al., 2016). In this paper, we attempt to bridge this gap by proposing a framework for lightly supervised quality estimation. We collect manually annotated scores for a small number of segments in a test corpus or document, and combine them with automatically predicted quality scores for the remaining segments to predict an overall quality estimate. An evaluation shows that our framework estimates quality more reliably than using fully automatic quality estimation approaches, while keeping annotation effort low by not requiring full references to be available for the particular domain.

pdf bib
Using Factored Word Representation in Neural Network Language Models
Jan Niehues | Thanh-Le Ha | Eunah Cho | Alex Waibel
Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers

pdf bib
The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2016
Thanh-Le Ha | Eunah Cho | Jan Niehues | Mohammed Mediani | Matthias Sperber | Alexandre Allauzen | Alexander Waibel
Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers

pdf bib
The QT21/HimL Combined Machine Translation System
Jan-Thorsten Peter | Tamer Alkhouli | Hermann Ney | Matthias Huck | Fabienne Braune | Alexander Fraser | Aleš Tamchyna | Ondřej Bojar | Barry Haddow | Rico Sennrich | Frédéric Blain | Lucia Specia | Jan Niehues | Alex Waibel | Alexandre Allauzen | Lauriane Aufrant | Franck Burlot | Elena Knyazeva | Thomas Lavergne | François Yvon | Mārcis Pinnis | Stella Frank
Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers

2015

pdf bib
Stripping Adjectives: Integration Techniques for Selective Stemming in SMT Systems
Isabel Slawik | Jan Niehues | Alex Waibel
Proceedings of the 18th Annual Conference of the European Association for Machine Translation

pdf bib
The Karlsruhe Institute of Technology Translation Systems for the WMT 2015
Eunah Cho | Thanh-Le Ha | Jan Niehues | Teresa Herrmann | Mohammed Mediani | Yuqi Zhang | Alex Waibel
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
The KIT-LIMSI Translation System for WMT 2015
Thanh-Le Ha | Quoc-Khanh Do | Eunah Cho | Jan Niehues | Alexandre Allauzen | François Yvon | Alex Waibel
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
ListNet-based MT Rescoring
Jan Niehues | Quoc Khanh Do | Alexandre Allauzen | Alex Waibel
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
Evaluation of Crowdsourced User Input Data for Spoken Dialog Systems
Maria Schmidt | Markus Müller | Martin Wagner | Sebastian Stüker | Alex Waibel | Hansjörg Hofmann | Steffen Werner
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Stripping Adjectives: Integration Techniques for Selective Stemming in SMT Systems
Isabel Slawik | Jan Niehues | Alex Waibel
Proceedings of the 18th Annual Conference of the European Association for Machine Translation

2014

pdf bib
Tight Integration of Speech Disfluency Removal into SMT
Eunah Cho | Jan Niehues | Alex Waibel
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume 2: Short Papers

pdf bib
The KIT-LIMSI Translation System for WMT 2014
Quoc Khanh Do | Teresa Herrmann | Jan Niehues | Alexander Allauzen | François Yvon | Alex Waibel
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
EU-BRIDGE MT: Combined Machine Translation
Markus Freitag | Stephan Peitz | Joern Wuebker | Hermann Ney | Matthias Huck | Rico Sennrich | Nadir Durrani | Maria Nadejde | Philip Williams | Philipp Koehn | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
The Karlsruhe Institute of Technology Translation Systems for the WMT 2014
Teresa Herrmann | Mohammed Mediani | Eunah Cho | Thanh-Le Ha | Jan Niehues | Isabel Slawik | Yuqi Zhang | Alex Waibel
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
Segmentation for Efficient Supervised Language Annotation with an Explicit Cost-Utility Tradeoff
Matthias Sperber | Mirjam Simantzik | Graham Neubig | Satoshi Nakamura | Alex Waibel
Transactions of the Association for Computational Linguistics, Volume 2

In this paper, we study the problem of manually correcting automatic annotations of natural language in as efficient a manner as possible. We introduce a method for automatically segmenting a corpus into chunks such that many uncertain labels are grouped into the same chunk, while human supervision can be omitted altogether for other segments. A tradeoff must be found for segment sizes. Choosing short segments allows us to reduce the number of highly confident labels that are supervised by the annotator, which is useful because these labels are often already correct and supervising correct labels is a waste of effort. In contrast, long segments reduce the cognitive effort due to context switches. Our method helps find the segmentation that optimizes supervision efficiency by defining user models to predict the cost and utility of supervising each segment and solving a constrained optimization problem balancing these contradictory objectives. A user study demonstrates noticeable gains over pre-segmented, confidence-ordered baselines on two natural language processing tasks: speech transcription and word segmentation.

pdf bib
A Corpus of Spontaneous Speech in Lectures: The KIT Lecture Corpus for Spoken Language Processing and Translation
Eunah Cho | Sarah Fünfer | Sebastian Stüker | Alex Waibel
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

With the increasing number of applications handling spontaneous speech, the needs to process spoken languages become stronger. Speech disfluency is one of the most challenging tasks to deal with in automatic speech processing. As most applications are trained with well-formed, written texts, many issues arise when processing spontaneous speech due to its distinctive characteristics. Therefore, more data with annotated speech disfluencies will help the adaptation of natural language processing applications, such as machine translation systems. In order to support this, we have annotated speech disfluencies in German lectures at KIT. In this paper we describe how we annotated the disfluencies in the data and provide detailed statistics on the size of the corpus and the speakers. Moreover, machine translation performance on a source text including disfluencies is compared to the results of the translation of a source text without different sorts of disfluencies or no disfluencies at all.

pdf bib
Manual Analysis of Structurally Informed Reordering in German-English Machine Translation
Teresa Herrmann | Jan Niehues | Alex Waibel
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Word reordering is a difficult task for translation. Common automatic metrics such as BLEU have problems reflecting improvements in target language word order. However, it is a crucial aspect for humans when deciding on translation quality. This paper presents a detailed analysis of a structure-aware reordering approach applied in a German-to-English phrase-based machine translation system. We compare the translation outputs of two translation systems applying reordering rules based on parts-of-speech and syntax trees on a sentence-by-sentence basis. For each sentence-pair we examine the global translation performance and classify local changes in the translated sentences. This analysis is applied to three data sets representing different genres. While the improvement in BLEU differed substantially between the data sets, the manual evaluation showed that both global translation performance as well as individual types of improvements and degradations exhibit a similar behavior throughout the three data sets. We have observed that for 55-64% of the sentences with different translations, the translation produced using the tree-based reordering was considered to be the better translation. As intended by the investigated reordering model, most improvements are achieved by improving the position of the verb or being able to translate a verb that could not be translated before.

2013

pdf bib
Combining Word Reordering Methods on different Linguistic Abstraction Levels for Statistical Machine Translation
Teresa Herrmann | Jan Niehues | Alex Waibel
Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in Statistical Translation

pdf bib
The Karlsruhe Institute of Technology Translation Systems for the WMT 2013
Eunah Cho | Thanh-Le Ha | Mohammed Mediani | Jan Niehues | Teresa Herrmann | Isabel Slawik | Alex Waibel
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Joint WMT 2013 Submission of the QUAERO Project
Stephan Peitz | Saab Mansour | Matthias Huck | Markus Freitag | Hermann Ney | Eunah Cho | Teresa Herrmann | Mohammed Mediani | Jan Niehues | Alex Waibel | Alexander Allauzen | Quoc Khanh Do | Bianka Buschbeck | Tonio Wandmacher
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
An MT Error-Driven Discriminative Word Lexicon using Sentence Structure Features
Jan Niehues | Alex Waibel
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Letter N-Gram-based Input Encoding for Continuous Space Language Models
Henning Sperr | Jan Niehues | Alex Waibel
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality

pdf bib
Measuring the Structural Importance through Rhetorical Structure Index
Narine Kokhlikyan | Alex Waibel | Yuqi Zhang | Joy Ying Zhang
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2012

pdf bib
The KIT Lecture Corpus for Speech Translation
Sebastian Stüker | Florian Kraft | Christian Mohr | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Academic lectures offer valuable content, but often do not reach their full potential audience due to the language barrier. Human translations of lectures are too expensive to be widely used. Speech translation technology can be an affordable alternative in this case. State-of-the-art speech translation systems utilize statistical models that need to be trained on large amounts of in-domain data. In order to support the KIT lecture translation project in its effort to introduce speech translation technology in KIT's lecture halls, we have collected a corpus of German lectures at KIT. In this paper we describe how we recorded the lectures and how we annotated them. We further give detailed statistics on the types of lectures in the corpus and its size. We collected the corpus with the purpose in mind that it should not just be suited for training a spoken language translation system the traditional way, but should also enable us to research techniques that enable the translation system to automatically and autonomously adapt itself to the varying topics and speakers of lectures

pdf bib
Joint WMT 2012 Submission of the QUAERO Project
Markus Freitag | Stephan Peitz | Matthias Huck | Hermann Ney | Jan Niehues | Teresa Herrmann | Alex Waibel | Hai-son Le | Thomas Lavergne | Alexandre Allauzen | Bianka Buschbeck | Josep Maria Crego | Jean Senellart
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
The Karlsruhe Institute of Technology Translation Systems for the WMT 2012
Jan Niehues | Yuqi Zhang | Mohammed Mediani | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Seventh Workshop on Statistical Machine Translation

2011

pdf bib
Wider Context by Using Bilingual Language Models in Machine Translation
Jan Niehues | Teresa Herrmann | Stephan Vogel | Alex Waibel
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
Joint WMT Submission of the QUAERO Project
Markus Freitag | Gregor Leusch | Joern Wuebker | Stephan Peitz | Hermann Ney | Teresa Herrmann | Jan Niehues | Alex Waibel | Alexandre Allauzen | Gilles Adda | Josep Maria Crego | Bianka Buschbeck | Tonio Wandmacher | Jean Senellart
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
The Karlsruhe Institute of Technology Translation Systems for the WMT 2011
Teresa Herrmann | Mohammed Mediani | Jan Niehues | Alex Waibel
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
TriS: A Statistical Sentence Simplifier with Log-linear Models and Margin-based Discriminative Training
Nguyen Bach | Qin Gao | Stephan Vogel | Alex Waibel
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Domain Adaptation in Statistical Machine Translation using Factored Translation Models
Jan Niehues | Alex Waibel
Proceedings of the 14th Annual conference of the European Association for Machine Translation

pdf bib
Tools for Collecting Speech Corpora via Mechanical-Turk
Ian Lane | Matthias Eck | Kay Rottmann | Alex Waibel
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk

pdf bib
The Karlsruhe Institute for Technology Translation System for the ACL-WMT 2010
Jan Niehues | Teresa Herrmann | Mohammed Mediani | Alex Waibel
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

2009

pdf bib
The Universität Karlsruhe Translation System for the EACL-WMT 2009
Jan Niehues | Teresa Herrmann | Muntsin Kolss | Alex Waibel
Proceedings of the Fourth Workshop on Statistical Machine Translation

pdf bib
End-to-End Evaluation in Simultaneous Translation
Olivier Hamon | Christian Fügen | Djamel Mostefa | Victoria Arranz | Muntsin Kolss | Alex Waibel | Khalid Choukri
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)

pdf bib
Incremental Adaptation of Speech-to-Speech Translation
Nguyen Bach | Roger Hsiao | Matthias Eck | Paisarn Charoenpornsawat | Stephan Vogel | Tanja Schultz | Ian Lane | Alex Waibel | Alan Black
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers

2008

pdf bib
Communicating Unknown Words in Machine Translation
Matthias Eck | Stephan Vogel | Alex Waibel
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

A new approach to handle unknown words in machine translation is presented. The basic idea is to find definitions for the unknown words on the source language side and translate those definitions instead. Only monolingual resources are required, which generally offer a broader coverage than bilingual resources and are available for a large number of languages. In order to use this in a machine translation system definitions are extracted automatically from online dictionaries and encyclopedias. The translated definition is then inserted and clearly marked in the original hypothesis. This is shown to lead to significant improvements in (subjective) translation quality.

2007

pdf bib
Translation Model Pruning via Usage Statistics for Statistical Machine Translation
Matthias Eck | Stephan Vogel | Alex Waibel
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers

2006

pdf bib
A Flexible Online Server for Machine Translation Evaluation
Matthias Eck | Stephan Vogel | Alex Waibel
Proceedings of the 11th Annual conference of the European Association for Machine Translation

2005

pdf bib
Augmenting a statistical translation system with a translation memory
Sanjika Hewavitharana | Stephan Vogel | Alex Waibel
Proceedings of the 10th EAMT Conference: Practical applications of machine translation

pdf bib
Adaptation of the translation model for statistical machine translation based on information retrieval
Almut Silja Hildebrand | Matthias Eck | Stephan Vogel | Alex Waibel
Proceedings of the 10th EAMT Conference: Practical applications of machine translation

pdf bib
Learning a Log-Linear Model with Bilingual Phrase-Pair Features for Statistical Machine Translation
Bing Zhao | Alex Waibel
Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing

pdf bib
Bilingual Word Spectral Clustering for Statistical Machine Translation
Bing Zhao | Eric P. Xing | Alex Waibel
Proceedings of the ACL Workshop on Building and Using Parallel Texts

pdf bib
Training and Evaluating Error Minimization Decision Rules for Statistical Machine Translation
Ashish Venugopal | Andreas Zollmann | Alex Waibel
Proceedings of the ACL Workshop on Building and Using Parallel Texts

2004

pdf bib
Improving Statistical Machine Translation in the Medical Domain using the Unified Medical Language system
Matthias Eck | Stephan Vogel | Alex Waibel
COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics

pdf bib
Language Model Adaptation for Statistical Machine Translation Based on Information Retrieval
Matthias Eck | Stephan Vogel | Alex Waibel
Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)

pdf bib
Interpreting BLEU/NIST Scores: How Much Improvement do We Need to Have a Better System?
Ying Zhang | Stephan Vogel | Alex Waibel
Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)

pdf bib
Improving Named Entity Translation Combining Phonetic and Semantic Similarities
Fei Huang | Stephan Vogel | Alex Waibel
Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004

pdf bib
A Thai Speech Translation System for Medical Dialogs
Tanja Schultz | Dorcas Alexander | Alan W. Black | Kay Peterson | Sinaporn Suebvisai | Alex Waibel
Demonstration Papers at HLT-NAACL 2004

pdf bib
Phrase Pair Rescoring with Term Weighting for Statistical Machine Translation
Bing Zhao | Stephan Vogel | Matthias Eck | Alex Waibel
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing

2003

pdf bib
Efficient Optimization for Bilingual Sentence Alignment Based on Linear Regression
Bing Zhao | Klaus Zechner | Stephen Vogel | Alex Waibel
Proceedings of the HLT-NAACL 2003 Workshop on Building and Using Parallel Texts: Data Driven Machine Translation and Beyond

pdf bib
Automatic Extraction of Named Entity Translingual Equivalence Based on Multi-Feature Cost Minimization
Fei Huang | Stephan Vogel | Alex Waibel
Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-language Named Entity Recognition

pdf bib
Effective Phrase Translation Extraction from Alignment Models
Ashish Venugopal | Stephan Vogel | Alex Waibel
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics

pdf bib
Speechalator: Two-Way Speech-to-Speech Translation in Your Hand
Alex Waibel | Ahmed Badran | Alan W. Black | Robert Frederking | Donna Gates | Alon Lavie | Lori Levin | Kevin Lenzo | Laura Mayfield Tomokiyo | Juergen Reichert | Tanja Schultz | Dorcas Wallace | Monika Woszczyna | Jing Zhang
Companion Volume of the Proceedings of HLT-NAACL 2003 - Demonstrations

2002

pdf bib
Improvements in Non-Verbal Cue Identification Using Multilingual Phone Strings
Tanja Schultz | Qin Jin | Kornel Laskowski | Alicia Tribble | Alex Waibel
Proceedings of the ACL-02 Workshop on Speech-to-Speech Translation: Algorithms and Systems

2001

pdf bib
Activity detection for information access to oral communication
Klaus Ries | Alex Waibel
Proceedings of the First International Conference on Human Language Technology Research

pdf bib
Advances in meeting recognition
Alex Waibel | Hua Yu | Tanja Schultz | Yue Pan | Michael Bett | Martin Westphal | Hagen Soltau | Thomas Schaaf | Florian Metze
Proceedings of the First International Conference on Human Language Technology Research

pdf bib
Architecture and Design Considerations in NESPOLE!: a Speech Translation System for E-commerce Applications
Alon Lavie | Chad Langley | Alex Waibel | Fabio Pianesi | Gianni Lazzari | Paolo Coletti | Loredana Taddei | Franco Balducci
Proceedings of the First International Conference on Human Language Technology Research

pdf bib
LingWear: A Mobile Tourist Information System
Christian Fügen | Martin Westphal | Mike Schneider | Tanja Schultz | Alex Waibel
Proceedings of the First International Conference on Human Language Technology Research

pdf bib
Towards Automatic Sign Translation
Jie Yang | Jiang Gao | Ying Zhang | Alex Waibel
Proceedings of the First International Conference on Human Language Technology Research

2000

pdf bib
Shallow Discourse Genre Annotation in CallHome Spanish
Klaus Ries | Lori Levin | Liza Valle | Alon Lavie | Alex Waibel
Proceedings of the Second International Conference on Language Resources and Evaluation (LREC’00)

pdf bib
DIASUMM: Flexible Summarization of Spontaneous Dialogues in Unrestricted Domains
Klaus Zechner | Alex Waibel
COLING 2000 Volume 2: The 18th International Conference on Computational Linguistics

pdf bib
Minimizing Word Error Rate in Textual Summaries of Spoken Language
Klaus Zechner | Alex Waibel
1st Meeting of the North American Chapter of the Association for Computational Linguistics

1998

pdf bib
Growing Semantic Grammars
Marsal Gavaldà | Alex Waibel
COLING 1998 Volume 1: The 17th International Conference on Computational Linguistics

pdf bib
Modeling with Structures in Statistical Machine Translation
Ye-Yi Wang | Alex Waibel
COLING 1998 Volume 2: The 17th International Conference on Computational Linguistics

pdf bib
Using Chunk Based Partial Parsing of Spontaneous Speech in Unrestricted Domains for Reducing Word Error Rate in Speech Recognition
Klaus Zechner | Alex Waibel
COLING 1998 Volume 2: The 17th International Conference on Computational Linguistics

pdf bib
Growing Semantic Grammars
Marsal Gavalda | Alex Waibel
36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1

pdf bib
Modeling with Structures in Statistical Machine translation
Ye-Yi Wang | Alex Waibel
36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 2

pdf bib
Using Chunk Based Partial Parsing of Spontaneous Speech in Unrestricted Domains for Reducing Word Error Rate in Speech Recognition
Klaus Zechner | Alex Waibel
36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 2

1997

pdf bib
Expanding the Domain of a Multi-lingual Speech-to-Speech Translation System
Alon Lavie | Lori Levin | Puming Zhan | Maite Taboada | Donna Gates | Mirella Lapata | Cortis Clark | Matthew Broadhead | Alex Waibel
Spoken Language Translation

pdf bib
Decoding Algorithm in Statistical Machine Translation
Ye-Yi Wang | Alex Waibel
35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics

1996

pdf bib
FeasPar - A Feature Structure Parser Learning to Parse Spoken Language
Finn Dag Buo | Alex Waibel
COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics

pdf bib
Multi-lingual Translation of Spontaneously Spoken Language in a Limited Domain
Alon Lavie | Donna Gates | Marsal Gavalda | Laura Mayfield | Alex Waibel | Lori Levin
COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics

pdf bib
JANUS: multi-lingual translation of spontaneous speech in limited domain
Alon Lavie | Lori Levin | Alex Waibel | Donna Gates | Marsal Gavalda | Laura Mayfield
Conference of the Association for Machine Translation in the Americas

1994

pdf bib
Future Directions
Joseph Pentheroudakis | Jaime Carbonell | Lutz Graunitz | Pierre Isabelle | Chris Montgomery | Alex Waibel
Proceedings of the First Conference of the Association for Machine Translation in the Americas

pdf bib
Recovering From Parser Failures: A Hybrid Statistical/Symbolic Approach
Carolyn Penstein Rose | Alex Waibel
The Balancing Act: Combining Symbolic and Statistical Approaches to Language

1993

pdf bib
Frequency Estimation of Verb Subcategorization Frames Based on Syntactic and Multidimensional Statistical Analysis
Akira Ushioda | David A. Evans | Ted Gibson | Alex Waibel
Proceedings of the Third International Workshop on Parsing Technologies

We describe a mechanism for automatically estimating frequencies of verb subcategorization frames in a large corpus. A tagged corpus is first partially parsed to identify noun phrases and then a regular grammar is used to estimate the appropriate subcategorization frame for each verb token in the corpus. In an experiment involving the identification of six fixed subcategorization frames, our current system showed more than 80% accuracy. In addition, a new statistical method enables the system to learn patterns of errors based on a set of training samples and substantially improves the accuracy of the frequency estimation.

pdf bib
Machine Translation
Alex Waibel
Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993

pdf bib
Recent Advances in Janus: A Speech Translation System
M. Woszczyna | N. Coccaro | A. Eisele | A. Lavie | A. McNair | T. Polzin | I. Rogina | C. P. Rose | T. Sloboda | M. Tomita | J. Tsutsumi | N. Aoki-Waibel | A. Waibel | W. Ward
Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993

pdf bib
The Automatic Acquisition of Frequencies of Verb Subcategorization Frames from Tagged Corpora
Akira Ushioda | David A. Evans | Ted Gibson | Alex Waibel
Acquisition of Lexical Knowledge from Text

1989

pdf bib
A Connectionist Parser Aimed at Spoken Language
Ajay Jain | Alex Waibel
Proceedings of the First International Workshop on Parsing Technologies

We describe a connectionist model which learns to parse single sentences from sequential word input. A parse in the connectionist network contains information about role assignment, prepositional attachment, relative clause structure, and subordinate clause structure. The trained network displays several interesting types of behavior. These include predictive ability, tolerance to certain corruptions of input word sequences, and some generalization capability. We report on experiments in which a small number of sentence types have been successfully learned by a network. Work is in progress on a larger database. Application of this type of connectionist model to the area of spoken language processing is discussed.
Search
Co-authors