Akanksha Bansal


pdf bib
KMI-Panlingua-IITKGP @SIGTYP2020: Exploring rules and hybrid systems for automatic prediction of typological features
Ritesh Kumar | Deepak Alok | Akanksha Bansal | Bornini Lahiri | Atul Kr. Ojha
Proceedings of the Second Workshop on Computational Research in Linguistic Typology

This paper enumerates SigTyP 2020 Shared Task on the prediction of typological features as performed by the KMI-Panlingua-IITKGP team. The task entailed the prediction of missing values in a particular language, provided, the name of the language family, its genus, location (in terms of latitude and longitude coordinates and name of the country where it is spoken) and a set of feature-value pair are available. As part of fulfillment of the aforementioned task, the team submitted 3 kinds of system - 2 rule-based and one hybrid system. Of these 3, one rule-based system generated the best performance on the test set. All the systems were ‘constrained’ in the sense that no additional dataset or information, other than those provided by the organisers, was used for developing the systems.

pdf bib
Developing a Multilingual Annotated Corpus of Misogyny and Aggression
Shiladitya Bhattacharya | Siddharth Singh | Ritesh Kumar | Akanksha Bansal | Akash Bhagat | Yogesh Dawer | Bornini Lahiri | Atul Kr. Ojha
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

In this paper, we discuss the development of a multilingual annotated corpus of misogyny and aggression in Indian English, Hindi, and Indian Bangla as part of a project on studying and automatically identifying misogyny and communalism on social media (the ComMA Project). The dataset is collected from comments on YouTube videos and currently contains a total of over 20,000 comments. The comments are annotated at two levels - aggression (overtly aggressive, covertly aggressive, and non-aggressive) and misogyny (gendered and non-gendered). We describe the process of data collection, the tagset used for annotation, and issues and challenges faced during the process of annotation. Finally, we discuss the results of the baseline experiments conducted to develop a classifier for misogyny in the three languages.


pdf bib
Panlingua-KMI MT System for Similar Language Translation Task at WMT 2019
Atul Kr. Ojha | Ritesh Kumar | Akanksha Bansal | Priya Rani
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

The present paper enumerates the development of Panlingua-KMI Machine Translation (MT) systems for Hindi ↔ Nepali language pair, designed as part of the Similar Language Translation Task at the WMT 2019 Shared Task. The Panlingua-KMI team conducted a series of experiments to explore both the phrase-based statistical (PBSMT) and neural methods (NMT). Among the 11 MT systems prepared under this task, 6 PBSMT systems were prepared for Nepali-Hindi, 1 PBSMT for Hindi-Nepali and 2 NMT systems were developed for Nepali↔Hindi. The results show that PBSMT could be an effective method for developing MT systems for closely-related languages. Our Hindi-Nepali PBSMT system was ranked 2nd among the 13 systems submitted for the pair and our Nepali-Hindi PBSMTsystem was ranked 4th among the 12 systems submitted for the task.