Adrian Pastor López-Monroy


2019

pdf bib
Detecting Depression in Social Media using Fine-Grained Emotions
Mario Ezra Aragón | Adrian Pastor López-Monroy | Luis Carlos González-Gurrola | Manuel Montes-y-Gómez
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Nowadays social media platforms are the most popular way for people to share information, from work issues to personal matters. For example, people with health disorders tend to share their concerns for advice, support or simply to relieve suffering. This provides a great opportunity to proactively detect these users and refer them as soon as possible to professional help. We propose a new representation called Bag of Sub-Emotions (BoSE), which represents social media documents by a set of fine-grained emotions automatically generated using a lexical resource of emotions and subword embeddings. The proposed representation is evaluated in the task of depression detection. The results are encouraging; the usage of fine-grained emotions improved the results from a representation based on the core emotions and obtained competitive results in comparison to state of the art approaches.

2018

pdf bib
Early Text Classification Using Multi-Resolution Concept Representations
Adrian Pastor López-Monroy | Fabio A. González | Manuel Montes | Hugo Jair Escalante | Thamar Solorio
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

The intensive use of e-communications in everyday life has given rise to new threats and risks. When the vulnerable asset is the user, detecting these potential attacks before they cause serious damages is extremely important. This paper proposes a novel document representation to improve the early detection of risks in social media sources. The goal is to effectively identify the potential risk using as few text as possible and with as much anticipation as possible. Accordingly, we devise a Multi-Resolution Representation (MulR), which allows us to generate multiple “views” of the analyzed text. These views capture different semantic meanings for words and documents at different levels of detail, which is very useful in early scenarios to model the variable amounts of evidence. Intuitively, the representation captures better the content of short documents (very early stages) in low resolutions, whereas large documents (medium/large stages) are better modeled with higher resolutions. We evaluate the proposed ideas in two different tasks where anticipation is critical: sexual predator detection and depression detection. The experimental evaluation for these early tasks revealed that the proposed approach outperforms previous methodologies by a considerable margin.

pdf bib
Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks on Social Media
Gustavo Aguilar | Adrian Pastor López-Monroy | Fabio González | Thamar Solorio
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Recognizing named entities in a document is a key task in many NLP applications. Although current state-of-the-art approaches to this task reach a high performance on clean text (e.g. newswire genres), those algorithms dramatically degrade when they are moved to noisy environments such as social media domains. We present two systems that address the challenges of processing social media data using character-level phonetics and phonology, word embeddings, and Part-of-Speech tags as features. The first model is a multitask end-to-end Bidirectional Long Short-Term Memory (BLSTM)-Conditional Random Field (CRF) network whose output layer contains two CRF classifiers. The second model uses a multitask BLSTM network as feature extractor that transfers the learning to a CRF classifier for the final prediction. Our systems outperform the current F1 scores of the state of the art on the Workshop on Noisy User-generated Text 2017 dataset by 2.45% and 3.69%, establishing a more suitable approach for social media environments.

2017

pdf bib
A Multi-task Approach for Named Entity Recognition in Social Media Data
Gustavo Aguilar | Suraj Maharjan | Adrian Pastor López-Monroy | Thamar Solorio
Proceedings of the 3rd Workshop on Noisy User-generated Text

Named Entity Recognition for social media data is challenging because of its inherent noisiness. In addition to improper grammatical structures, it contains spelling inconsistencies and numerous informal abbreviations. We propose a novel multi-task approach by employing a more general secondary task of Named Entity (NE) segmentation together with the primary task of fine-grained NE categorization. The multi-task neural network architecture learns higher order feature representations from word and character sequences along with basic Part-of-Speech tags and gazetteer information. This neural network acts as a feature extractor to feed a Conditional Random Fields classifier. We were able to obtain the first position in the 3rd Workshop on Noisy User-generated Text (WNUT-2017) with a 41.86% entity F1-score and a 40.24% surface F1-score.