Adrian Benton


pdf bib
Roll Call Vote Prediction with Knowledge Augmented Models
Pallavi Patil | Kriti Myer | Ronak Zala | Arpit Singh | Sheshera Mysore | Andrew McCallum | Adrian Benton | Amanda Stent
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

The official voting records of United States congresspeople are preserved as roll call votes. Prediction of voting behavior of politicians for whom no voting record exists, such as individuals running for office, is important for forecasting key political decisions. Prior work has relied on past votes cast to predict future votes, and thus fails to predict voting patterns for politicians without voting records. We address this by augmenting a prior state of the art model with multiple sources of external knowledge so as to enable prediction on unseen politicians. The sources of knowledge we use are news text and Freebase, a manually curated knowledge base. We propose augmentations based on unigram features for news text, and a knowledge base embedding method followed by a neural network composition for relations from Freebase. Empirical evaluation of these approaches indicate that the proposed models outperform the prior system for politicians with complete historical voting records by 1.0% point of accuracy (8.7% error reduction) and for politicians without voting records by 33.4% points of accuracy (66.7% error reduction). We also show that the knowledge base augmented approach outperforms the news text augmented approach by 4.2% points of accuracy.

pdf bib
Deep Generalized Canonical Correlation Analysis
Adrian Benton | Huda Khayrallah | Biman Gujral | Dee Ann Reisinger | Sheng Zhang | Raman Arora
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

We present Deep Generalized Canonical Correlation Analysis (DGCCA) – a method for learning nonlinear transformations of arbitrarily many views of data, such that the resulting transformations are maximally informative of each other. While methods for nonlinear two view representation learning (Deep CCA, (Andrew et al., 2013)) and linear many-view representation learning (Generalized CCA (Horst, 1961)) exist, DGCCA combines the flexibility of nonlinear (deep) representation learning with the statistical power of incorporating information from many sources, or views. We present the DGCCA formulation as well as an efficient stochastic optimization algorithm for solving it. We learn and evaluate DGCCA representations for three downstream tasks: phonetic transcription from acoustic & articulatory measurements, recommending hashtags and recommending friends on a dataset of Twitter users.


pdf bib
Deep Dirichlet Multinomial Regression
Adrian Benton | Mark Dredze
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Dirichlet Multinomial Regression (DMR) and other supervised topic models can incorporate arbitrary document-level features to inform topic priors. However, their ability to model corpora are limited by the representation and selection of these features – a choice the topic modeler must make. Instead, we seek models that can learn the feature representations upon which to condition topic selection. We present deep Dirichlet Multinomial Regression (dDMR), a generative topic model that simultaneously learns document feature representations and topics. We evaluate dDMR on three datasets: New York Times articles with fine-grained tags, Amazon product reviews with product images, and Reddit posts with subreddit identity. dDMR learns representations that outperform DMR and LDA according to heldout perplexity and are more effective at downstream predictive tasks as the number of topics grows. Additionally, human subjects judge dDMR topics as being more representative of associated document features. Finally, we find that supervision leads to faster convergence as compared to an LDA baseline and that dDMR’s model fit is less sensitive to training parameters than DMR.

pdf bib
Using Author Embeddings to Improve Tweet Stance Classification
Adrian Benton | Mark Dredze
Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text

Many social media classification tasks analyze the content of a message, but do not consider the context of the message. For example, in tweet stance classification – where a tweet is categorized according to a viewpoint it espouses – the expressed viewpoint depends on latent beliefs held by the user. In this paper we investigate whether incorporating knowledge about the author can improve tweet stance classification. Furthermore, since author information and embeddings are often unavailable for labeled training examples, we propose a semi-supervised pretraining method to predict user embeddings. Although the neural stance classifiers we learn are often outperformed by a baseline SVM, author embedding pre-training yields improvements over a non-pre-trained neural network on four out of five domains in the SemEval 2016 6A tweet stance classification task. In a tweet gun control stance classification dataset, improvements from pre-training are only apparent when training data is limited.


pdf bib
Multitask Learning for Mental Health Conditions with Limited Social Media Data
Adrian Benton | Margaret Mitchell | Dirk Hovy
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Language contains information about the author’s demographic attributes as well as their mental state, and has been successfully leveraged in NLP to predict either one alone. However, demographic attributes and mental states also interact with each other, and we are the first to demonstrate how to use them jointly to improve the prediction of mental health conditions across the board. We model the different conditions as tasks in a multitask learning (MTL) framework, and establish for the first time the potential of deep learning in the prediction of mental health from online user-generated text. The framework we propose significantly improves over all baselines and single-task models for predicting mental health conditions, with particularly significant gains for conditions with limited data. In addition, our best MTL model can predict the presence of conditions (neuroatypicality) more generally, further reducing the error of the strong feed-forward baseline.

pdf bib
Ethical Research Protocols for Social Media Health Research
Adrian Benton | Glen Coppersmith | Mark Dredze
Proceedings of the First ACL Workshop on Ethics in Natural Language Processing

Social media have transformed data-driven research in political science, the social sciences, health, and medicine. Since health research often touches on sensitive topics that relate to ethics of treatment and patient privacy, similar ethical considerations should be acknowledged when using social media data in health research. While much has been said regarding the ethical considerations of social media research, health research leads to an additional set of concerns. We provide practical suggestions in the form of guidelines for researchers working with social media data in health research. These guidelines can inform an IRB proposal for researchers new to social media health research.


pdf bib
Learning Multiview Embeddings of Twitter Users
Adrian Benton | Raman Arora | Mark Dredze
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)


pdf bib
Entity Linking for Spoken Language
Adrian Benton | Mark Dredze
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies