Aaron Traylor


pdf bib
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
Derek Tam | Nicholas Monath | Ari Kobren | Aaron Traylor | Rajarshi Das | Andrew McCallum
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE–a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE’s ability to detect whether two strings can refer to the same entity–a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE (or one of its variants) outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE’s ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in Bˆ3 F1 over the previous state-of-the-art approach.


pdf bib
Seq2Seq Models with Dropout can Learn Generalizable Reduplication
Brandon Prickett | Aaron Traylor | Joe Pater
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

Natural language reduplication can pose a challenge to neural models of language, and has been argued to require variables (Marcus et al., 1999). Sequence-to-sequence neural networks have been shown to perform well at a number of other morphological tasks (Cotterell et al., 2016), and produce results that highly correlate with human behavior (Kirov, 2017; Kirov & Cotterell, 2018) but do not include any explicit variables in their architecture. We find that they can learn a reduplicative pattern that generalizes to novel segments if they are trained with dropout (Srivastava et al., 2014). We argue that this matches the scope of generalization observed in human reduplication.