OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers Using Piecewise Convolutional Neural Networks

Dushyanta Dhyani


Abstract
We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation significantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 teams on the classification task on noisy data and 12th out of 28 teams on the classification task on clean data.
Anthology ID:
S18-1124
Volume:
Proceedings of The 12th International Workshop on Semantic Evaluation
Month:
June
Year:
2018
Address:
New Orleans, Louisiana
Venue:
*SEMEVAL
SIGs:
SIGLEX | SIGSEM
Publisher:
Association for Computational Linguistics
Note:
Pages:
783–787
Language:
URL:
https://www.aclweb.org/anthology/S18-1124
DOI:
10.18653/v1/S18-1124
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/S18-1124.pdf