THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM

Chuhan Wu, Fangzhao Wu, Junxin Liu, Zhigang Yuan, Sixing Wu, Yongfeng Huang


Abstract
Traditional sentiment analysis approaches mainly focus on classifying the sentiment polarities or emotion categories of texts. However, they can’t exploit the sentiment intensity information. Therefore, the SemEval-2018 Task 1 is aimed to automatically determine the intensity of emotions or sentiment of tweets to mine fine-grained sentiment information. In order to address this task, we propose a system based on an attention CNN-LSTM model. In our model, LSTM is used to extract the long-term contextual information from texts. We apply attention techniques to selecting this information. A CNN layer with different size of kernels is used to extract local features. The dense layers take the pooled CNN feature maps and predict the intensity scores. Our system reaches average Pearson correlation score of 0.722 (ranked 12/48) in emotion intensity regression task, and 0.810 in valence regression task (ranked 15/38). It indicates that our system can be further extended.
Anthology ID:
S18-1028
Volume:
Proceedings of The 12th International Workshop on Semantic Evaluation
Month:
June
Year:
2018
Address:
New Orleans, Louisiana
Venue:
*SEMEVAL
SIGs:
SIGLEX | SIGSEM
Publisher:
Association for Computational Linguistics
Note:
Pages:
186–192
Language:
URL:
https://www.aclweb.org/anthology/S18-1028
DOI:
10.18653/v1/S18-1028
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/S18-1028.pdf