

(a) Transition-based parser (TBMIN)

Averageimpact

OTHER
HEAD
* GRAND
+ CHILD
© SIBL

Distance
(b) Graph-based parser (GBMIN)

Figure 4: The average impact of tokens on BiLSTM vectors trained with dependency parser with respect to the
surface distance and the structural (gold-standard) relation between them.

tation x; from the sentence. If the derivative of T
with respect to x; is high then the word x; has a
high influence on the vector. We compute the [3-
norm of the gradient of x with respect to z; and
normalize it by the sum of norms of all the words
from the sentence calling this measure impact

S

oz ||

ox;
S

Jx

81’j

il

impact(z , i) = 100 x

For every sentence from the development set
and every vector z; we calculate the impact of
every representation x; from the sentence on the
vector z;. We bucket those impact values accord-
ing to the distance between the representation and
the word. We then use the gold-standard trees to
divide every bucket into five groups: correct heads
of x;, children (i.e., dependents) of x;, grandpar-
ents (i.e., heads of heads), siblings, and other.

Figure 4 shows the average impact of tokens
at particular positions. Similarly as shown by
Gaddy et al. (2018) even words 15 and more posi-
tions away have a non-zero effect on the BILSTM
vector. Interestingly, the impact of words which
we know to be structurally close to x; is higher.
For example, for the transition-based parser (Fig-
ure 4a) at positions 5 an average impact is lower
than 2.5%, children and siblings of x; have a
slightly higher impact, and the heads and grand-
parents around 5%. For the graph-based parser
(Figure 4b) the picture is similar with two notice-
able differences. The impact of heads is much
stronger for words 10 and more positions apart.
But it is smaller than in the case of transition-based
parser when the heads are next to z;.

122

We conclude that the BiLSTMs are indeed in-
fluenced by the distance, but when trained with a
dependency parser they also capture a significant
amount of non-trivial syntactic relations.

5.2 Structure and Information Flow

Now that we know that the representations encode
structural information we ask how this information
influences the decisions of the parser.

First, we investigate how much structural infor-
mation flows into the final layer of the network.
When we look back at the architecture in Fig-
ure 1 we see that when the final MLP scores pos-
sible transitions or arcs it uses only feature vec-
tors {sg, 51, by} or {Hh&, ﬁdg} But thanks to the
BiLSTMs the vectors encode information about
other words from the sentence. We examine from
which words the signal is the strongest when the
parser makes the final decision.

We extend the definition of impact to capture
how a specific word representation x; influences
the final MLP score sc (we calculate the derivative
of sc with respect to x;). We parse every develop-
ment sentence. For every predicted transition/arc
we calculate how much its score sc was affected
by every word from the sentence. We group im-
pacts of words depending on their positions.

Transition-based parser. For the transition-
based parser we group tokens according to their
positions in the configuration. For example, for
the decision in Figure la impact(sc, 1) would be
grouped as s and impact(sc, j) as sog.

In Figure 5a we plot the 15 positions with the
highest impact and the number of configurations
they appear in (gray bars). As expected, sg, s1, and

Average impact

400k

200k

I 300k - 150k

In size

L 200k L 100k

B

L 100k X X L 50k
X X x x %
X

0

T ——
S0 s1 bo sir sor b1 Sor SoL SoR S2r SI1E SiL 1T b2

52

(a) Transition-based parser (TBMIN); positions depend on the

configuration; .- marks left children that are not the leftmost,
g marks right children that are not the rightmost.

h d ¢ dig s hzydss g hgzds

(b) Graph-based parser (GBMIN); positions are:
heads (h), dependents (d), children of d (c), siblings
(s), grandparents (g), h,dp; tokens at distance =+
from h or d which are none of h, d, c, s, or g.

Figure 5: Positions with the highest impact on the MLP scores (blue crosses) and their frequency (gray bars).

bo have the highest influence on the decision of the
parser. The next two positions are s1g and Sgf.
Interestingly, those are the same positions which
used as features caused the biggest gains in perfor-
mance for the models which did not use BILSTMs
(see Figure 3a). They are much less frequent than
b1 but when they are present the model is strongly
influenced by them. After b; we can notice posi-
tions which are not part of the manually designed
extended feature set of TBEXT, such as sz (left
children of s that are not the leftmost).

Graph-based parser. For the graph-based
parser we group tokens according to their position
in the full predicted tree. We then bucket the
impacts into: heads (h), dependents (d), children
(i.e., dependents of dependents) (c), siblings (s),
and grandparents (i.e., heads of heads) (g). Words
which do not fall into any of those categories
are grouped according to their surface distance
from heads and dependents. For example, h5
are tokens two positions away from the head
which do not act as dependent, child, sibling, or
grandparent.

Figure 5b presents 10 positions with the high-
est impact and the number of arcs for which they
are present (gray bars). As expected, heads and
dependents have the highest impact on the scores
of arcs, much higher than any of the other tokens.
Interestingly, among the next three bins with the
highest impact are children and siblings. Children
are less frequent than structurally unrelated tokens
at distance 1 (hg7, d77), and much less frequent
than h1 or d15 but they influence the final scores
more. The interesting case is siblings — they not
only have a strong average impact but they are also

123

very frequent, suggesting that they are very impor-
tant for the parsing accuracy.

The results above show that the implicit struc-
tural context is not only present in the models, but
also more diverse than when incorporated through
conventional explicit structural features.

5.3 Structure and Performance

Finally, we investigate if the implicit structural
context is important for the performance of the
parsers. To do so, we take tokens at structural po-
sitions with the highest impact and train new ab-
lated models in which the information about those
tokens is dropped from the BiLSTM layer. For
example, while training an ablated model without
sor, for every configuration we re-calculate all the
BiLSTM vectors as if sgz, was not in the sentence.
When there is more than one token at a specific
position, for example s, or ¢ (i.e., children of the
dependent), we pick a random one to drop. That
way every ablated model looses information about
at most one word.

We note that several factors can be responsi-
ble for drops in performance of the ablated mod-
els. For example, the proposed augmentation dis-
torts distance between tokens which might have
an adverse impact on the trained representations.
Therefore, in the following comparative analysis
we interpret the obtained drops as an approxima-
tion of how much particular tokens influence the
performance of the models.

Transition-based parser. Figure 6a presents the
drops in the parsing performance for the ab-

80

80

60 -

so 81 bo Sir sor b1 Sor SoL SoR S2r S1R SiL 1T b2

(a) Transition-based parser (TBMIN)

52

60 -

h d ¢ dgr s hzrdys g hasdgz

(b) Graph-based parser (GBMIN)

Figure 6: The performance drops when tokens at particular positions are removed from the BiLSTM encoding.
The red line marks average LAS of uninterrupted model. Feature sets of both models are highlighted in green.

lated models.® First of all, removing the vectors

S e

{s0, s1, bo} (marked in green on the plot) only
from the BiLSTM layer (although they are still
used as features) causes visible drops in perfor-
mance. One explanation might be that when the
vector s is recalculated without knowledge of s;
the model loses information about the distance be-
tween them. Secondly, we can notice that other
drops depend on both the impact and frequency
of positions. The biggest declines are visible af-
ter removing so;, and sjp — precisely the posi-
tions which we found to have the highest impact
on the parsing decisions. Interestingly, the posi-
tions which were not a part of the TBEXT feature
set, such as s, or s,z, although not frequent are
important for the performance.

Graph-based parser. Corresponding results for
the graph-based parser are presented in Figure 6b
(we use gold-standard trees as the source of infor-
mation about structural relations between tokens).
The biggest drop can be observed for ablated mod-
els without siblings. Clearly, information coming
from those tokens implicitly into MLP is very im-
portant for the final parsing accuracy. The next
two biggest drops are caused by lack of children
and grandparents. As we showed in Figure 5b
children, although less frequent, have a stronger
impact on the decision of the parser. But dropping
grandparents also significantly harms the models.

We conclude that information about partial sub-
trees is not only present when the parser makes

°It is worth noting that not all of the models suffer from
the ablation. For example, dropping vectors sar causes al-
most no harm. This suggests that re-calculating the represen-
tations multiple times does not have a strong negative effect
on training.

124

final decisions but also strongly influences those
decisions. Additionally, the deteriorated accuracy
of the ablated models shows that the implicit struc-
tural context can not be easily compensated for.

6 Related Work

Feature extraction. Kiperwasser and Goldberg
(2016) and Cross and Huang (2016) first applied
BiLSTMs to extract features for transition-based
dependency parsers. The authors demonstrated
that an architecture using only a few positional
features (four for the arc-hybrid system and three
for arc-standard) is sufficient to achieve state-of-
the-art performance. Shi et al. (2017) showed that
this number can be further reduced to two fea-
tures for arc-hybrid and arc-eager systems. De-
creasing the size of the feature set not only al-
lows for construction of lighter and faster neu-
ral networks (Wang and Chang, 2016; Vilares
and Gémez-Rodriguez, 2018) but also enables the
use of exact search algorithms for several projec-
tive (Shi et al., 2017) and non-projective (Goémez-
Rodriguez et al., 2018) transition systems. A sim-
ilar trend can be observed for graph-based de-
pendency parsers. State-of-the-art models (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2016) typically use only two features of heads
and dependents, possibly also incorporating their
distance (Wang and Chang, 2016). Moreover,
Wang and Chang (2016) show that arc-factored
BiLSTM-based parsers can compete with conven-
tional higher-order models in terms of accuracy.
None of the above mentioned efforts address the
question how dependency parsers are able to com-
pensate for the lack of structural features. The
very recent work by de Lhoneux et al. (2019)
looked into this issue from a different perspec-

tive than ours — composition. They showed that
composing the structural context with recursive
networks as in Dyer et al. (2015) is redundant
for the K&G transition-based architecture. The
authors analyze components of the BiLSTMs to
show which of them (forward v. backward LSTM)
is responsible for capturing subtree information.

RNNs and syntax. Recurrent neural networks,
which BiLSTMs are a variant of, have been re-
peatedly analyzed to understand whether they can
learn syntactic relations. Such analyses differ
in terms of: (1) methodology they employ to
probe what type of knowledge the representa-
tions learned and (2) tasks on which the rep-
resentations are trained on. Shi et al. (2016)
demonstrated that sequence-to-sequence machine-
translation systems capture source-language syn-
tactic relations. Linzen et al. (2016) showed
that when trained on the task of number agree-
ment prediction the representations capture a non-
trivial amount of grammatical structure (although
recursive neural networks are better at this task
than sequential LSTMs (Kuncoro et al., 2018)).
Blevins et al. (2018) found that RNN representa-
tions trained on a variety of NLP tasks (includ-
ing dependency parsing) are able to induce syn-
tactic features (e.g., constituency labels of par-
ent or grandparent) even without explicit supervi-
sion. Finally, Conneau et al. (2018) designed a set
of tasks probing linguistic knowledge of sentence
embedding methods.

Our work contributes to this line of research in
two ways: (1) from the angle of methodology,
we show how to employ derivatives to pinpoint
what syntactic relations the representations learn;
(2) from the perspective of tasks, we demonstrate
how BiLSTM-based dependency parsers take ad-
vantage of structural information encoded in the
representations. In the case of constituency pars-
ing Gaddy et al. (2018) offer such an analysis. The
authors show that their BILSTM-based models im-
plicitly learn the same information which was con-
ventionally provided to non-neural parsers, such
as grammars and lexicons.

7 Discussion and Conclusion

We examined how the application of BiLSTMs in-
fluences the modern transition- and graph-based
parsing architectures. The BiLSTM-based parsers
can compensate for the lack of traditional struc-
tural features. Specifically, the features drawn

125

from partial subtrees become redundant because
the parsing models encode them implicitly.

The main advantage of BiLSTMs comes with
their ability to capture not only surface but
also syntactic relations. ~ When the represen-
tations are trained together with a parser they
encode structurally-advanced relations such as
heads, children, or even siblings and grandparents.
This structural information is then passed directly
(through feature vectors) and indirectly (through
BiLSTMs encoding) to MLP and is used for scor-
ing transitions and arcs. Finally, the implicit struc-
tural information is important for the final parsing
decisions: dropping it in ablated models causes
their performance to deteriorate.

The introduction of BiLSTMs into dependency
parsers has an additional interesting consequence.
The classical transition- and graph-based depen-
dency parsers have their strengths and limitations
due to the trade-off between the richness of fea-
ture functions and the inference algorithm (Mc-
Donald and Nivre, 2007). Our transition- and
graph-based architectures use the same word rep-
resentations. We showed that those representa-
tions trained together with the parsers capture syn-
tactic relations in a similar way. Moreover, the
transition-based parser does not incorporate struc-
tural features through the feature set. And the
graph-based parser makes use of far away surface
tokens but also structurally related words. Evi-
dently, the employment of BiLSTM feature ex-
tractors blurs the difference between the two ar-
chitectures. The one clear advantage of the graph-
based parser is that it performs global inference
(but exact search algorithms are already being ap-
plied to projective (Shi et al., 2017) and non-
projective (Gémez-Rodriguez et al., 2018) transi-
tion systems). Therefore, an interesting question
is if integrating those two architectures can still be
beneficial for the parsing accuracy as in Nivre and
McDonald (2008). We leave this question for fu-
ture work.

Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732,
project D8. We would like to thank the anonymous
reviewers for their comments. We also thank our
colleagues Anders Bjorkelund, Ozlem Cetinoglu,
and Xiang Yu for many conversations and com-
ments on this work.

References

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs Encode Soft Hierarchical Syn-
tax. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 14—19, Melbourne,
Australia. Association for Computational Linguis-
tics.

Dangi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740-750. Association for Compu-
tational Linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest
arborescence of a directed graph. Scientia Sinica,
14(10):1396-1400.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loic Barrault, and Marco Baroni. 2018.
What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126-2136, Melbourne,
Australia. Association for Computational Linguis-
tics.

James Cross and Liang Huang. 2016. Incremental
Parsing with Minimal Features Using Bi-Directional
LSTM. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 32-37. Association
for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2016.
Deep Biaffine Attention for Neural Dependency
Parsing. CoRR, abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334-343. Association for Computa-
tional Linguistics.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(4):233-240.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s Going On in Neural Constituency Parsers?
An Analysis. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

126

999-1010. Association for Computational Linguis-
tics.

Carlos Gémez-Rodriguez, Tianze Shi, and Lillian Lee.
2018. Global Transition-based Non-projective De-
pendency Parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2664—
2675, Melbourne, Australia. Association for Com-
putational Linguistics.

Alex Graves and Jiirgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602—-610.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-

tions of the Association for Computational Linguis-
tics, 4:313-327.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs Can Learn Syntax-Sensitive Dependencies
Well, But Modeling Structure Makes Them Better.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1426—-1436. Association for
Computational Linguistics.

Miryam de Lhoneux, Miguel Ballesteros, and Joakim
Nivre. 2019. Recursive subtree composition in
Istm-based dependency parsing. arXiv preprint
arXiv:1902.09781.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From raw text to universal
dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
207-217. Association for Computational Linguis-
tics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of Istms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521-535.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-Margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91-98. Association for
Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Pars-
ing Models. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL).

https://www.aclweb.org/anthology/P18-2003
https://www.aclweb.org/anthology/P18-2003
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://www.aclweb.org/anthology/P18-1198
https://www.aclweb.org/anthology/P18-1198
https://www.aclweb.org/anthology/P18-1198
https://doi.org/10.18653/v1/P16-2006
https://doi.org/10.18653/v1/P16-2006
https://doi.org/10.18653/v1/P16-2006
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://www.aclweb.org/anthology/P18-1248
https://www.aclweb.org/anthology/P18-1248
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/P18-1132
http://aclweb.org/anthology/P18-1132
https://doi.org/10.18653/v1/K17-3022
https://doi.org/10.18653/v1/K17-3022
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/P05-1012
http://aclweb.org/anthology/P05-1012
http://aclweb.org/anthology/D07-1013
http://aclweb.org/anthology/D07-1013
http://aclweb.org/anthology/D07-1013

Ryan McDonald and Fernando Pereira. 2006. On-
line Learning of Approximate Dependency Parsing
Algorithms. In [/ith Conference of the European
Chapter of the Association for Computational Lin-
guistics.

Thomas Mueller, Helmut Schmid, and Hinrich
Schiitze. 2013. Efficient higher-order crfs for mor-
phological tagging. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 322-332. Association for Com-
putational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. CoRR,
abs/1701.03980.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together, pages 50-57, Barcelona,
Spain.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351-359. Association for Computational Linguis-
tics.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An Improved Oracle for Dependency Parsing with
Online Reordering. In Proceedings of the 1lth
International Conference on Parsing Technologies
(IWPT’09), pages 73-76. Association for Computa-
tional Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A Multilingual
Treebank Collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing Graph-Based and Transition-Based Dependency
Parsers. In Proceedings of ACL-08: HLT, pages
950-958, Columbus, Ohio. Association for Compu-
tational Linguistics.

Emily Pitler. 2014. A Crossing-Sensitive Third-Order
Factorization for Dependency Parsing. Transactions
of the Association for Computational Linguistics,
2:41-54.

127

Nils Reimers and Iryna Gurevych. 2018. Why com-
paring single performance scores does not allow
to draw conclusions about machine learning ap-
proaches. arXiv preprint arXiv:1803.09578.

Tianze Shi, Liang Huang, and Lillian Lee. 2017.
Fast(er) Exact Decoding and Global Training for
Transition-Based Dependency Parsing via a Mini-
mal Feature Set. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12-23. Association for Computa-
tional Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-Based Neural MT Learn Source Syntax? In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1526-1534. Association for Computational Linguis-
tics.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018. An Investigation of the In-
teractions Between Pre-Trained Word Embeddings,
Character Models and POS Tags in Dependency
Parsing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2711-2720. Association for Compu-
tational Linguistics.

David Vilares and Carlos Gémez-Rodriguez. 2018.
Transition-based Parsing with Lighter Feed-Forward
Networks. In Proceedings of the Second Workshop
on Universal Dependencies (UDW 2018), pages
162-172. Association for Computational Linguis-
tics.

Wenhui Wang and Baobao Chang. 2016. Graph-based
Dependency Parsing with Bidirectional LSTM. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 23062315, Berlin, Germany.
Association for Computational Linguistics.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
Dependency Parsing with Rich Non-local Features.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 188-193. Associa-
tion for Computational Linguistics.

Zhisong Zhang and Hai Zhao. 2015. High-order
Graph-based Neural Dependency Parsing. In Pro-
ceedings of the 29th Pacific Asia Conference on Lan-

guage, Information and Computation, pages 114—
123.

http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://aclweb.org/anthology/D13-1032
http://aclweb.org/anthology/D13-1032
http://arxiv.org/abs/1701.03980
http://arxiv.org/abs/1701.03980
http://aclweb.org/anthology/W04-0308
http://aclweb.org/anthology/W04-0308
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/W09-3811
http://aclweb.org/anthology/W09-3811
http://aclweb.org/anthology/E06-1011
http://aclweb.org/anthology/E06-1011
http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/P/P08/P08-1108
https://doi.org/10.1162/tacl_a_00164
https://doi.org/10.1162/tacl_a_00164
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
http://aclweb.org/anthology/D18-1291
http://aclweb.org/anthology/D18-1291
http://aclweb.org/anthology/D18-1291
http://aclweb.org/anthology/D18-1291
http://aclweb.org/anthology/W18-6019
http://aclweb.org/anthology/W18-6019
http://www.aclweb.org/anthology/P16-1218
http://www.aclweb.org/anthology/P16-1218
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://aclweb.org/anthology/P11-2033
http://aclweb.org/anthology/P11-2033
http://aclweb.org/anthology/Y15-1014
http://aclweb.org/anthology/Y15-1014

A Appendix

Word embedding dimension
POS tag embedding dimension
Hidden units in MLP

BiLSTM layers

BiLSTM dimensions

« for word dropout

Trainer

Non-lin function

100
20
100

2

125
0.25
Adam
tanh

Table 2: Hyperparameters for the parsers.

en-ptb ar en fi gre he ko ru sV zh
TBMIN 0.237 0323 0.207 0.163 0382 0.391 0.740 0.282 0.295 0.398
TBEXT 0.211 0.191 0.176 0323 0472 0454 0456 0408 0.257 0.267
GBMIN 0.146 0.179 0212 0.157 0340 0269 0.300 0.228 0.379 0.408
GBSIBL 0.103 0.186 0.149 0.219 0372 0229 0.163 0.169 0.195 0.441

Table 3: Standard deviation for results in Table 1.

0.9 100k
=/ GBMIN
i GBSIBL L 80k
0.8 1 == TBMIN
5 5 | 60k
5 0.7
L
o - 40k
0.6
- 20k
0.5 —T—T 0

Dependency length

Figure 7: Dependency precision relative to arc length on development sets.

128

123456 7 8 9101112131415+

Bin size

