Leveraging Eventive Information for Better Metaphor Detection and Classification
I-Hsuan Chen, Yunfei Long, Qin Lu, Chu-Ren Huang
Abstract
Metaphor detection has been both challenging and rewarding in natural language processing applications. This study offers a new approach based on eventive information in detecting metaphors by leveraging the Chinese writing system, which is a culturally bound ontological system organized according to the basic concepts represented by radicals. As such, the information represented is available in all Chinese text without pre-processing. Since metaphor detection is another culturally based conceptual representation, we hypothesize that sub-textual information can facilitate the identification and classification of the types of metaphoric events denoted in Chinese text. We propose a set of syntactic conditions crucial to event structures to improve the model based on the classification of radical groups. With the proposed syntactic conditions, the model achieves a performance of 0.8859 in terms of F-scores, making 1.7% of improvement than the same classifier with only Bag-of-word features. Results show that eventive information can improve the effectiveness of metaphor detection. Event information is rooted in every language, and thus this approach has a high potential to be applied to metaphor detection in other languages.- Anthology ID:
- K17-1006
- Volume:
- Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
- Month:
- August
- Year:
- 2017
- Address:
- Vancouver, Canada
- Venue:
- CoNLL
- SIG:
- SIGNLL
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 36–46
- Language:
- URL:
- https://www.aclweb.org/anthology/K17-1006
- DOI:
- 10.18653/v1/K17-1006
- PDF:
- http://aclanthology.lst.uni-saarland.de/K17-1006.pdf