Annotation Process for the Dialog Act Classification of a Taglish E-commerce Q&A Corpus

Jared Rivera, Jan Caleb Oliver Pensica, Jolene Valenzuela, Alfonso Secuya, Charibeth Cheng


Abstract
With conversational agents or chatbots making up in quantity of replies rather than quality, the need to identify user intent has become a main concern to improve these agents. Dialog act (DA) classification tackles this concern, and while existing studies have already addressed DA classification in general contexts, no training corpora in the context of e-commerce is available to the public. This research addressed the said insufficiency by building a text-based corpus of 7,265 posts from the question and answer section of products on Lazada Philippines. The SWBD-DAMSL tagset for DA classification was modified to 28 tags fitting the categories applicable to e-commerce conversations. The posts were annotated manually by three (3) human annotators and preprocessing techniques decreased the vocabulary size from 6,340 to 1,134. After analysis, the corpus was composed dominantly of single-label posts, with 34% of the corpus having multiple intent tags. The annotated corpus allowed insights toward the structure of posts created with single to multiple intents.
Anthology ID:
D19-5108
Volume:
Proceedings of the Second Workshop on Economics and Natural Language Processing
Month:
November
Year:
2019
Address:
Hong Kong
Venues:
EMNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
61–68
Language:
URL:
https://www.aclweb.org/anthology/D19-5108
DOI:
10.18653/v1/D19-5108
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/D19-5108.pdf
Attachment:
 D19-5108.Attachment.zip