Word Sense Disambiguation for 158 Languages using Word Embeddings Only

Varvara Logacheva, Denis Teslenko, Artem Shelmanov, Steffen Remus, Dmitry Ustalov, Andrey Kutuzov, Ekaterina Artemova, Chris Biemann, Simone Paolo Ponzetto, Alexander Panchenko


Abstract
Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al., (2018), enabling WSD in these languages. Models and system are available online.
Anthology ID:
2020.lrec-1.728
Volume:
Proceedings of the 12th Language Resources and Evaluation Conference
Month:
May
Year:
2020
Address:
Marseille, France
Venues:
COLING | LREC
SIG:
Publisher:
European Language Resources Association
Note:
Pages:
5943–5952
Language:
English
URL:
https://www.aclweb.org/anthology/2020.lrec-1.728
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/2020.lrec-1.728.pdf