Rethinking Supervised Learning and Reinforcement Learning in Task-Oriented Dialogue Systems

Ziming Li, Julia Kiseleva, Maarten de Rijke


Abstract
Dialogue policy learning for task-oriented dialogue systems has enjoyed great progress recently mostly through employing reinforcement learning methods. However, these approaches have become very sophisticated. It is time to re-evaluate it. Are we really making progress developing dialogue agents only based on reinforcement learning? We demonstrate how (1) traditional supervised learning together with (2) a simulator-free adversarial learning method can be used to achieve performance comparable to state-of-the-art reinforcement learning-based methods. First, we introduce a simple dialogue action decoder to predict the appropriate actions. Then, the traditional multi-label classification solution for dialogue policy learning is extended by adding dense layers to improve the dialogue agent performance. Finally, we employ the Gumbel-Softmax estimator to alternatively train the dialogue agent and the dialogue reward model without using reinforcement learning. Based on our extensive experimentation, we can conclude the proposed methods can achieve more stable and higher performance with fewer efforts, such as the domain knowledge required to design a user simulator and the intractable parameter tuning in reinforcement learning. Our main goal is not to beat RL with supervised learning, but to demonstrate the value of rethinking the role of reinforcement learning and supervised learning in optimizing task-oriented dialogue systems.
Anthology ID:
2020.findings-emnlp.316
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2020
Month:
November
Year:
2020
Address:
Online
Venues:
EMNLP | Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3537–3546
Language:
URL:
https://www.aclweb.org/anthology/2020.findings-emnlp.316
DOI:
10.18653/v1/2020.findings-emnlp.316
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/2020.findings-emnlp.316.pdf