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(a) Bookmark1: Peripancreatic lymph node (b) Bookmark2: Periportal lymph node

(c) Bookmark3: Para-aortic lymph node (d) Bookmark4: Interaortocaval lymph node

Figure 1: Sample sentence with lymph node bookmarks: “Abdominal/pelvic lymph nodes: There is intraperi-
toneal and retroperitoneal lymphadenopathy, for example enlarged mesenteric/peripancreatic lymph node measur-
ing Bookmark1[[(2.8 cm x 1.3 cm) (series 6, image 24)]], periportal lymph node measuring Bookmark2[[(2.8
cm x 1.7 cm) (series 6, image 19)]], retroperitoneal left paraaortic lymph node conglomerate measuring Book-
mark3[[(3.8 cm x 3.1 cm) (series 6, image 22)]], and retroperitoneal aortocaval lymph node measuring Book-
mark4[[(2.0 cm x 1.3 cm) (series 6, image 25)]]. ”
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ical narratives, making it available for large-scale
analysis. In the clinical domain, NLP has been ap-
plied to identify positive, negative, and uncertain
findings from radiology reports (Peng et al., 2018;
Irvin et al., 2019; Yan et al., 2018). For MRI re-
ports, NLP has been used to identify breast imaging
lexicons for breast cancer (Sippo et al., 2013; Liu
et al., 2019). However, most of these systems are
rule-based, and few studies have investigated NLP
in MRI reports of the lymph nodes.

To tackle these obstacles and challenges, this
paper outlines a framework based on deep learning
to harvest lymph node annotations and construct
an annotated dataset of lymph nodes by automati-
cally extracting lymph nodes from clinical reports.
The contributions of this study are threefold: (1)
We construct an ontology of 41 types of abdomi-
nal lymph nodes with a hierarchical relationship.
(2) We develop a transformer-based deep learning
module to extract and classify the abdominal lymph
node types (or a non-abdominal lymph node or not
a lymph node) for each bookmark mentioned in
the sentence. (3) We make codes and pre-trained
models publicly available.

The rest of the paper is organized as follows. We
first present related work in Section 2. Then, we
describe the method to construct the ontology and
dataset in Section 3, followed by our experimental
setup, results, and discussion in Section 4. We
conclude with future work in the last section.

2 Related work

In recent years, there has been considerable interest
in harvesting information and knowledge from free-
text on electronic health records (EHRs) (Jensen
et al., 2017). However, manually annotating a large
dataset to fulfill the needs of deep learning mod-
els downstream is time-consuming and expensive.
Therefore, researchers have applied NLP systems
to identify structured labels from radiology reports
(Irvin et al., 2019; Johnson et al., 2019; Wang et al.,
2017; Smit et al., 2020).

Previous efforts in this area have focused mostly
on two directions. One is the rule-based methods.
NegEx, in combination with the Unified Medical
Language System (UMLS), is a widely used al-
gorithm that utilizes regular expressions to deter-
mine the negative concepts in the clinical narra-
tives (Chapman et al., 2013; Aronson and Lang,
2010; Chapman et al., 2011). NegBio extended
NegEx by utilizing universal dependencies and sub-

graph matching to detect both negative and uncer-
tain lung diseases in chest X-rays and was used
to generate labels for the NIH Chest X-ray and
MIMIC-III-CXR datasets (Johnson et al., 2019;
Wang et al., 2017; Peng et al., 2018). The CheX-
pert labeler further extended NegBio by increasing
the rule sets and improving the NLP pipeline to
construct report-level disease annotations (Irvin
et al., 2019). CheXpert++ trained a hybrid rule-
and BERT- based labeler on the radiograph domain
but offers additional commentary on the utility of
active-learning strategies to inform the interplay
between the hybrid and rule-based labeler (McDer-
mott et al., 2020).

The other direction is to apply machine learn-
ing methods to construct labels (Huang and Lowe,
2007; Clark et al., 2011; Xue et al., 2019; Peng
et al., 2019a). Huang et al. described a hybrid
approach to automatically detect negations in clin-
ical radiology reports (Huang and Lowe, 2007).
Clark et al. combine machine learning (conditional
random field and maximum entropy) and rules to
determine the assertion status of medical problems
mentioned in clinical reports (Clark et al., 2011).
Recently, deep learning approaches have also been
studied intensively. Chen et al. applied CNNs to
classify pulmonary embolism in chest CT reports
(Chen et al., 2018). Drozdov et al. compared thir-
teen supervised classifiers and demonstrate that bi-
directional long short-term memory (BiLSTM) net-
works with attention mechanisms effectively iden-
tify labels in CXR reports (Drozdov et al., 2020).
Wood et al. present a transformer-based network
for brain magnetic resonance imaging (MRI) radiol-
ogy report classification, which automates this task
by assigning image labels based on free-text ex-
pert radiology reports (Wood et al., 2020). Smit et
al. introduced a BERT-based approach to medical
image report labeling that exploits both the scale
of available rule-based systems and the quality of
expert annotations (Smit et al., 2020).

3 Methods

In this section, we first describe the process of con-
structing the abdominal lymph node ontology and
gold-standard labels from the MRI reports associ-
ated with lymph nodes on MRI images. Then we
demonstrate the development of the transformer-
based method to detect lymph nodes from the re-
ports.
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3.1 Abdominal lymph node ontology
construction

The labeling task in this study is to extract the pres-
ence of abdominal lymph nodes from radiology
reports. Therefore, the first step is to construct the
lymph node ontology. The challenge here is that the
nomenclature of abdominal lymph nodes is compli-
cated. Most of them are named after the anatomical
organs their lymphatics are draining from, but some
are named after an adjacent structure, and some are
named for an anatomical compartment space. This
makes them have confusing synonyms or some-
times overlapping areas, giving them a hierarchy.
To make a standardized version of the abdominal
lymph node ontology, we used three widely used
guidelines (Amin et al., 2017) and textbooks (Haris-
inghani, 2013; Richter and Feyerabend, 2012) to
establish the hierarchical relationship, representa-
tive synonyms, and relationships with overlapping
areas.

3.2 MRI dataset

For model development and validation, we col-
lected large-scale MRI studies from NIH Clinical
Center, performed between Jan 2015 to Sept 2019,
along with their associated radiology reports. (Fig-
ure 2). The majority (63%) of the MRI studies
were from the oncology department. The initial
search from the Picture Archiving and Communi-
cation System (PACS) database at the NIH Clinical
Center returns 21,786 studies with 9,343 patients.
We excluded non-abdomen studies and studies with
missing reports. The final dataset consists of a total
of 2,099 lymph node bookmarks from 1,379 stud-
ies of 917 unique patients, and their corresponding
text reports retrospectively from the Picture Archiv-
ing and Communication System (PACS) database
at the NIH Clinical Center. These lymph node la-
bels were reviewed by a radiologist with 12 years
of post-graduate experience. The study was a ret-
rospective study and was approved by the Institu-
tional Review Board with a waiver of informed
consent. This data set comprised the reference
(gold) standard for our evaluation and comparative
analysis.

3.3 Framework

We developed a hybrid system to extract abdomi-
nal lymph nodes from the MRI reports. It consists
of two modules: (1) a rule-based lymph node de-
tection, and (2) a transformer-based lymph node

Excluded:
1. Missing DICOM Structured Report
2. Non-abdomen studies
3. Empty reports

2,099 lymph node bookmarks 
1,379 studies,  917 patients 

1,412 bookmarks

Initial search in PACS for MRI studies
between 1/2/2015 – 9/13/2019: 
21,786 studies, 9,343 patients

252 bookmarks 435 bookmarks

Training set Development set Test set

27,918 bookmarks
8,926 studies, 3,820 patients

Figure 2: The training, development, and test sets for
classification of lymph node types from MRI reports.

classification (Figure 3).

3.3.1 Sentence extraction with potential
lymph node bookmarks

In the reports of our institute, radiologists describe
the lymph nodes and insert hyperlinks, size mea-
surements, or slice numbers in the sentence to refer
to the imaging findings of interest (called a book-
mark). A bookmark thus is a hyperlink connection
between the annotation in the image and the written
description in the report. From the reports, we se-
lected the full sentences that included the hyperlink,
presuming that they had information most relevant
to the connected image annotation.

In this step, we extract sentences with book-
marks that potentially link to lymph nodes. We first
split the reports into sections. For our reports, the
text is often organized into five sections: Clinical
Indication, Technique, Comparison, Findings, and
Impression. Among others, the “Findings” section
lists the normal, abnormal, or potentially abnormal
observations the radiologist saw in each area of
the abdomen or pelvis in the exam. Hence, this
section is often organized by organs such as the
liver and kidney, blood vessels, and lymph nodes.

Transformer-based 
modelSection split

Sentence split

Pattern matching

• 41 types of Lymph node
• Non-abdominal lymph node
• Not a lymph node

Lymph node ontology

Radiology Report
Bookmark classification

for lymph node types
Sentence extraction with 

potential lymph node 
bookmarks

Figure 3: The architecture of the framework.
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Table 1: The number of bookmarks in one sentence.

# bookmarks per sentence n (%)

1 1,457 69.4
2 409 19.5
3 149 7.1
4 63 3.0
5 15 0.7
6 6 0.3

Each section/subsection begins with a heading and
ends with one or more empty lines. If available, the
section headings were phrases from the beginning
of a new line to a colon (e.g., “Liver and Gallblad-
der:”). We, therefore, use this information to split
the reports into sections. Second, we tokenized the
sentences using NLTK (Bird, 2006).

If a report contains the “Lymph node” subsec-
tion, we extracted sentences with lymph nodes
from this subsection; otherwise, we extracted sen-
tences with “lymph node” mentioned in the “Find-
ing section” using regular expressions. We skipped
the reports if it is not sectioned (0.3%). In our
study, 85% of lymph node bookmarks are from the
“Lymph node” subsection, and the remaining 16%
are from reports with the “Lymph node” subsection
but “Finding section” sections.

3.3.2 Bookmark classification for the
abdominal lymph node type

After obtained candidate bookmarks that may link
to lymph nodes, the next step is to classify book-
marks for the lymph node types. Here, we use the
full sentences that included the bookmark, presum-
ing that they had information most relevant to the
connected image annotation. However, the book-
marked sentences often contain a complex mixture
of information describing not only various book-
marked lymph nodes but also other bookmarked
abnormalities. A sample sentence is shown in Fig-
ure 1. There are four bookmarks in a sentence, each
of which has a different lymph node type. Table 1
shows that more than 30% of sentences have at
least two bookmarks.

To solve this problem, we developed a
transformer-based deep learning module with 43
labels (41 abdominal lymph node types, non-
abdominal lymph node, and not a lymph node).
Specifically, we treat the lymph node recognition
task as a sentence classification by replacing the
bookmark of interest in the sentence with a prede-

fined tag $BMK$. Suppose that h0 is the output
embedding of the token [CLS], the probability that
a bookmark labeled as class c is predicted by a
fully connected layer and a logistic regression with
softmax:P (c|X) = softmax(ah0 + b). We fine-
tune the model on the training set using the categor-
ical cross-entropy loss,−

∑
c δ(yc = ŷ)logP (c|X)

where δ(yc = ŷ) = 1 if the classification ŷ of X
is the correct ground-truth for the class c ∈ C;
otherwise δ(yc = ŷ) = 0.

BERT is a contextualized word representation
model that is pretrained based on a masked lan-
guage modeling using bidirectional transformers
(Devlin et al., 2019). In this paper, we fine-tuned
the model using the BlueBERT base model (Peng
et al., 2019b). The BlueBERT was pre-trained on
the combination of PubMed and MIMIC-III clin-
ical notes. We also compared the performance of
our method using other BERT variants.

4 Results

4.1 Abdominal lymph node ontology

We construct an ontology of 41 abdominal lymph
nodes relevant to MRI (Figure 4). Because of
the nature of lymph node nomenclature, the la-
bels had to have a hierarchical structure and
some labels overlapped with others (Harisinghani,
2013; Richter and Feyerabend, 2012; Amin et al.,
2017). Those subgroups include coarse, high-level
lymph nodes such as “mediastinal lymph node”,
“retroperitoneal lymph node”, and “pelvic lymph
node”, as well as fine-grained lymph nodes such
as “perigastric lymph node along greater curvature”
and “pericecal lymph node”. Table 2 shows the
distribution of lymph nodes in the dataset, which
is imbalanced. The majority of abdominal lymph
nodes in the dataset are periportal and para-aortic
lymph nodes.

4.2 Results of the lymph node classification

We trained the model on one NVIDIA® V100 GPU
using the TensorFlow framework26. We used the
Adamax optimizer (Kingma and Ba, 2015) with a
learning rate of 10−5 and a batch size of 32. We
used the BlueBERT base model as the domain-
specific language model. As a result, all the to-
kenized texts using wordpieces (Wu et al., 2016)
were chopped to spans no longer than 128 tokens.
We set the maximum number of epochs to 30.

To evaluate the performance of the framework,
we use 70% for training, 10% for development, and
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Root

Mediastinal LN

Retroperitoneal LN

Peritoneal LN

Pelvic LN

Inguinal LN

Subcarinal LN
Cardiophrenic LN

Paraesophageal LN

Para-aortic LN
Interaortocaval LN

Retrocrural LN

Retrocaval LN

Preaortic LN

Paracaval LN

Precaval LN

Paraspinal LN
Subdiaphragmatic LN

Perihepatic LN

Paraduodenal LN
Hepatic artery LN

Periportal/peripancreatic LN

Perigastric LN
Splenic LN

Celiac LN
Superior mesenteric LN

Mesenteric LN

Common iliac LN
External iliac LN

Psoas LN
Presacral LN

Perivesicular LN

Periportal LN
Portocaval LN

Peripancreatic LN

Perigastric LN along lesser curvature
Perigastric LN along greater curvature

Gastrosplenic LN
Gastrohepatic ligament LN

Hepatoduodenal ligament LN

Paracolic LN Pericecal LN

Non abdominal LN

Not a LN

Figure 4: The abdominal lymph node (LN) ontology.

Table 2: The distribution of lymph node in the dataset.

Lymph node n (%) Lymph node n (%)

Periportal 300 14.30 Paraduodenal 11 0.50
Para-aortic 278 13.20 Subcarinal 9 0.40
Retroperitoneal 257 12.20 Superior mesenteric 9 0.40
Mesenteric 186 8.90 Paraesophageal 8 0.40
Portocaval 125 6.00 Peritoneal 7 0.30
Peripancreatic 120 5.70 Paraspinal 7 0.30
Interaortocaval 95 4.50 Paracolic 7 0.30
Gastrohepatic ligament 73 3.50 Pericecal 7 0.30
Retrocrural 44 2.10 External iliac 6 0.30
Paracaval 39 1.90 Pelvic 6 0.30
Retrocaval 32 1.50 Inguinal 6 0.30
Mediastinal 26 1.20 Perigastric LN along GC 5 0.20
Periportal/peripancreatic 24 1.10 Perigastric 4 0.20
Common iliac 21 1.00 Hepatoduodenal ligament 4 0.20
Cardiophrenic 20 1.00 Hepatic artery 3 0.10
Precaval 19 0.90 Splenic 2 0.10
Psoas 18 0.90 Presacral 1 0.00
Celiac 17 0.80 Perigastric LN along LC 1 0.00
Perihepatic 14 0.70 Non-abdominal LN 238 11.30
Subdiaphragmatic 12 0.60 Not a LN 26 1.20
Preaortic 12 0.60

GC - greater curvature. LC - lesser curvature

20% for testing. Table 3 shows the performance
of our systems on the classification of 5 coarse-
grained lymph node types by (P)recision, (R)ecall,
and (F)1-score. The micro metrics count the total

true positives, false negatives, and false positives
across all lymph node types. The macro metrics
calculate precision, recall, and F1 for each lymph
node type and find their unweighted mean. The
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Table 3: Test results on the classification of 5 coarse-
grained lymph node types.

Lymph nodes P R F

Mediastinal LN 0.778 1.000 0.875
Retroperitoneal LN 0.975 0.994 0.985
Peritoneal LN 0.959 0.989 0.974
Pelvic LN 1.000 0.923 0.960
Inguinal LN 1.000 1.000 1.000
Non-abdominal LN 0.952 0.784 0.860
Not a LN 1.000 0.500 0.667

micro 0.959 0.959 0.959
macro 0.952 0.884 0.903
micro weighted 0.960 0.959 0.957

weighted metrics calculate precision, recall, and F1
for each lymph node type and find their average
weighted by the number of true instances for each
type. Our system achieved an overall precision of
0.960, recall of 0.959, and F1-score of 0.957. We
achieved F1-score ≥ 0.850 on all coarse-grained
lymph node types. On the other hand, we observed
that on “negative” cases (not a lymph node), the
recall is 0.5. This is because the dataset has fewer
negative instances (26) in total, which may not be
sufficient to train and test the model. In the future,
more negative cases shall be manually included
to handle the imbalanced dataset. However, we
consider it not a major issue in our framework since
the first step utilizes rigid extraction patterns and
achieves high precision.

Table 4 shows the performance on the classifi-
cation of all fine-grained lymph node types. Our
system achieved an overall precision of 0.925, re-
call of 0.913, and F1-score of 0.912. We achieved
F1-score 1.00 on 8 types, ≥ 0.90 on 17 types, and
≥ 0.80 on 23 types.

We also compare our model on BERT variants:
ClinicalBERT (Alsentzer et al., 2019), BioBERT
(Lee et al., 2020), and BlueBERT. The Clinical-
BERT was pretrained on MIMIC-III generic clini-
cal text. The BioBERT was pretrained on PubMed.
For reference, we include a rule-based system
where the type of lymph node is selected based
on the nearest keyword (e.g., cardiophrenic, in-
guinal, etc.) from the bookmark in the sentence.
Table 5 shows that deep-learning-based methods
can successfully classify the type of each lymph
node mentioned in the sentences. The system us-
ing BlueBERT (MriBERT) outperforms that using

BioBERT. This observation shows the impact of
using clinical notes during the pre-training process.
On the other hand, the system using ClinicalBERT
achieved lower performance. It may suggest that
the MIMIC-III clinical text alone may not be large
enough to sufficiently pre-train the BERT model.

5 Conclusion

In this study, we introduced an ontology of 41 types
of abdominal lymph nodes with a hierarchical rela-
tionship. We then proposed an end-to-end frame-
work for combining rules and deep learning for
accurate bookmark classification for lymph node
types from MRI reports. In this framework, the
rule-based method is first used to extract sentences
with potential lymph node bookmarks. Then a
BERT-based model pretrained on MRI reports was
used to classify each bookmark into one of 41 types
of abdominal lymph node, non-abdominal lymph
nodes, or not a lymph node. We evaluated our
framework on 2,099 bookmarks manually anno-
tated by a radiological expert. We also compared
our framework with a rule-based system and other
BERT-based models. We find that our framework
achieved 0.912 in F1-score, which outperforms the
rule-based system and other BERT variations.

Our study has several limitations. First, our
model is limited to the 41 abdominal lymph nodes.
While we believe the list is comprehensive, we may
miss some lymph node types due to training cor-
pus bias. Second, our evaluation is performed on
a single corpus. Cross-institutional experiments
need to be performed in the future to evaluate the
generalizability of the model.

While our work only scratches the surface of
using text mining techniques and deep learning
to extract the lymph node from radiology reports,
we hope it will shed light on the development of
generalizable NLP models that can extract highly
accurate labels.
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Table 4: Test results on the classification of fine-grained lymph node types.

Lymph nodes P R F Lymph nodes P R F

Periportal 0.903 0.933 0.918 Subdiaphragmatic 1.000 0.667 0.800
Para-aortic 0.902 0.982 0.940 Preaortic 0.500 0.333 0.400
Retroperitoneal 0.980 0.962 0.971 Paraduodenal 1.000 0.667 0.800
Mesenteric 0.900 0.947 0.923 Subcarinal 0.667 1.000 0.800
Portocaval 0.889 0.960 0.923 Superior mesenteric 1.000 0.500 0.667
Peripancreatic 0.923 1.000 0.960 Paraesophageal 1.000 1.000 1.000
Interaortocaval 1.000 1.000 1.000 Peritoneal 1.000 1.000 1.000
Gastrohepatic ligament 0.938 1.000 0.968 Paraspinal 1.000 1.000 1.000
Retrocrural 1.000 1.000 1.000 Paracolic 1.000 0.500 0.667
Paracaval 0.667 0.500 0.571 Pericecal 0.500 1.000 0.667
Retrocaval 0.667 0.857 0.750 External iliac 1.000 1.000 1.000
Mediastinal 0.625 0.833 0.714 Pelvic 1.000 1.000 1.000
Periportal/peripancreatic 0.833 1.000 0.909 Inguinal 0.667 1.000 0.800
Common iliac 1.000 1.000 1.000 Perigastric LN along LC 0.500 1.000 0.667
Cardiophrenic 0.750 0.750 0.750 Non-abdominal LN 0.975 0.765 0.857
Precaval 0.750 0.750 0.750 Not a LN 1.000 0.333 0.500
Psoas 1.000 1.000 1.000 micro 0.913 0.913 0.913
Celiac 1.000 1.000 1.000 macro 0.861 0.859 0.839
Perihepatic 1.000 0.667 0.800 micro weighted 0.925 0.913 0.912

GC - greater curvature. LC - lesser curvature

Table 5: Test results of various methods on lymph node classification.

Models Coarse-grained LN types Fine-grained LN types

P R F P R F

Rule-based 0.827 0.579 0.644 0.699 0.453 0.533
ClinicalBERT 0.914 0.915 0.913 0.878 0.878 0.874
BioBERT 0.932 0.931 0.928 0.896 0.887 0.885
BlueBERT (MriBERT) 0.960 0.959 0.957 0.925 0.913 0.912
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