伟大的男人和倔强的女人:基于语料库的形容词性别偏度历时研究(Great Males and Stubborn Females: A Diachronic Study of Corpus-Based Gendered Skewness in Chinese Adjectives)

Shucheng Zhu (朱述承), Pengyuan Liu (刘鹏远)


Abstract
性别偏见现象是社会语言学和计算语学学者均关注的研究热点,但目前大多数研究都是基于英语的,鲜有对汉语中性别偏见现象,特别是基于形容词的研究缺乏。而形容词是衡量社会对男性和女性角色规约的有力抓手。本文首先利用调查问卷的方法,构建了一个含有466个形容词的数据集,定义性别偏度为特定形容词词义和男性或女性群体相匹配的程度,并计算了数据集中每个形容词的性别偏度。然后基于DCC语料库,研究了《人民日报》的形容词性别偏度的历时总体变化,并考察了和姓名搭配的形容词的历时变化。发现《人民日报》所使用的形容词随时间的推移整体呈现中性化趋势,但在文化大革命期间呈现非常男性化的特征,和男性姓名搭配的形容词整体呈现中性化趋势。
Anthology ID:
2020.ccl-1.4
Volume:
Proceedings of the 19th Chinese National Conference on Computational Linguistics
Month:
October
Year:
2020
Address:
Haikou, China
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
31–42
Language:
Chinese
URL:
https://www.aclweb.org/anthology/2020.ccl-1.4
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/2020.ccl-1.4.pdf