融合目标端句法的AMR-to-Text生成(AMR-to-Text Generation with Target Syntax)

Jie Zhu (朱杰), Junhui Li (李军辉)


Abstract
抽象语义表示到文本(AMR-to-Text)生成的任务是给定AMR图,生成相同语义表示的文本。可以把此任务当作一个从源端AMR图到目标端句子的机器翻译任务。目前存在的一些方法都在探索如何更好的对图结构进行建模。然而,它们都存在一个未限定的问题,因为在生成阶段许多句法的决策并不受语义图的约束,从而忽略了句子内部潜藏的句法信息。为了明确考虑这一不足,该文提出一种直接而有效的方法,显示的在AMR-to-Text生成的任务中融入句法信息,并在Transformer和目前该任务最优性能的模型上进行了实验。实验结果表明,在现存的两份标准英文数据集LDC2018E86和LDC2017T10上,都取得了显著的提升,达到了新的最高性能。
Anthology ID:
2020.ccl-1.16
Volume:
Proceedings of the 19th Chinese National Conference on Computational Linguistics
Month:
October
Year:
2020
Address:
Haikou, China
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
162–171
Language:
Chinese
URL:
https://www.aclweb.org/anthology/2020.ccl-1.16
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
http://aclanthology.lst.uni-saarland.de/2020.ccl-1.16.pdf