

Please help us determine the exact meaning of the highlighted words in the command shown below. The command is given to an Al assistant to help a
player in the game of Minecraft.

You will be answering a series of questions about the highlighted text. Each question is either multiple-choice, or requires you to select which words in
the sentence correspond to which property of the thing.

1. Place your mouse arrow over the questions and options for detailed tips.
2. When selecting the words, please select all words (along with properties of the thing). So in “destroy the blue house" select *blue house™
and not just "house”

3. When answering the questions, remember that you are answering them to find more details about the highlighted words .

Few examples below:
“make a small red bright cube there"

« Select 'Name", "Abstract/non-numeric size’ and ‘Colour’ properties from the radios.
« For 'Select all words that indicate the name of the thing to be built’ select ‘cube’
+ For ‘Select all words that represent the size' select ‘small"

« For 'Select all words that represent the colour’ select 'red"

« For 'Some other property not mentioned above' select 'bright’

"destroy the house over there"
« For 'Where should the construction happen?" select "The location is represented using an indefinite noun like ‘there! or ‘over here"™
"go to the cube behind me"

« For 'Where should the construction happen? select “Somewhere relative to where the speaker is standing”
« For 'Where (which direction) in relation to where the speaker is standing?" select ‘Behin

“complete that"
+ Select "There are words or pronouns that refer to the object to be completed”
"go behind the sheep"

« Select "Somewhere relative to another object(s) / area(s)"
« Select "Behind" for "Where (which direction) in relation to the other object(s)?"
« Select "the sheep" for "Click on all words specifying the object / area relative to which location is given®

Figure 11: The task instructions shown to crowd-
sourced workers for the annotation Tool b

Command: go 5 steps in front of that

Please specify details of where the assistant should move.
‘Where should the assistant move to

© Notspecified
The location s epresented using an indefinite noun like there'or ‘ove here'
Exact numerical coordinatesare ivens

Where the speakerislookin
" N e.in front of where I am

‘Somewhererelativeto where the speaker s looking ¢ e
looking

‘Where the speaker i standing

‘Somewhere reltive to where the speaker s standing

Where the assstant i standing

‘Somewhere reltive to where the assstant i standing,
‘Somewhere reltive to (or exacly at) another object(s) / area(s)
Other

If a number of steps is specified, how many ?

Command: go 5§ steps in front of that

Somewhere relative to where the assistant is standing
© Somewhere relative o (or exactly at) another object(s) / area(s)
Other

Left or towards the west direction
Right or towards the east direction
Above or towards the north direction
Below or towards the south direction

© Infront
Behind
Avay from,

Inside

Outside

Between two object(s) / area(s)
Nearby or close to

Around

Exactlyat

Other

Clickon

® 5 seps @ fromt of |t
e 'to the right of this’, ‘near
that', behind these', next to
O those', ‘underneath it ete

No

Figure 12: The step by step screenshot of annotat-
ing properties of highlighted words for“location” in a
“Move” action.

Commana:dtre he v gt b by e e

Please specify detals of the thing that needs to be destroyed.
Clckon sl mesioned properinofhe ot n Mghlghid st

wd sboveis

Command: destroy the big bright house by the tree

Please specify details of the thing that needs to be destroyed.

© Name

“thi', that’ these, those’ it etc)
“The buikding material
Colour
© Abstract/non-numericsize (e.g. big’ ‘small, etc)
Height
Length
width
Depth
© Some other property not mentioned above

destroy | the big bright | howse | by the tree

Whatis the size?

destroy | the | big | bright house by the | tree

Select all words for this property

destroy | the big | bright | howse by the tree

Figure 13: The step by step screenshot of annotating
properties of highlighted words for“reference_object”
in a “Destroy” action.

Figure 14: The task instructions shown to crowd-
sourced workers for splitting composite commands

C Action Tree structure

This section describes the details of logical form of
each action. We support three dialogue types: HU-
MAN_GIVE_.COMMAND, GET_-MEMORY and
PUT_MEMORY. The logical form for actions has
been pictorially represented in Figures: 1 and 2

We support the following actions in our dataset
: Build, Copy, Dance, Spawn, Resume, Fill, De-
stroy, Move, Undo, Stop, Dig and FreeBuild.
A lot of the actions use “location” and “refer-
ence_object” as children in their logical forms.
To make the logical forms more presentable, we
have shown the detailed representation of a “ref-
erence_object” (reused in action trees using the
variable: “REF_OBJECT”) in Figure 15 and the
representation of “location” (reused in action trees
using the variable: “LOCATION”) in figure 16.
The representations of actions refer to these vari-
able names in their trees.
REF_OBJECT :
The recursion depth of REF_OBJECT in LOCATION
was never greater than 1 in the data. So a
REF_OBJECT can have a LOCATION that
has a REF_OBJECT that has a LOCATION
(and the final location will be one of

COORDINATES / AGENT_POS / SPEAKER_POS /
SPEAKER_LOOK) .

"reference_object" : {
"repeat" : {
"repeat_key" :
"repeat_count" : span,
"repeat_dir" : YLEFT’ / 'RIGHT’ / 'UP’/
"DOWN’ / 'FRONT’ / ’'BACK’ / ’AROUND’}

"FOR’ / ’ALL’,

"has_name" : span,
"has_colour" : span,
"has_size" : span,
"has_tag": span,

"has_length": span,
"has_width": span,
"has_height": span,
"contains_coreference"
LOCATION }

Figure 15: Logical form of a reference_object child

: "yes",

LOCATION:

"location" : {
"location_type" : COORDINATES / REFERENCE_OBJECT /
AGENT_POS / SPEAKER _POS / SPEAKER_LOOK
"steps" : span,
"contains_coreference" : "yes"
"relative_direction" : 'LEFT’ / 'RIGHT’ / ’'UP’/
"DOWN’ / ’"FRONT’ / ’'BACK’ / 'AWAY’ / ’'INSIDE’
/ '"NEAR’ / 'OUTSIDE’ / 'BETWEEN’,
"coordinates" : span, (present if "location_type"
is ’"COORDINATES),
REF_OBJECT (present if "location_type" is
' REFERENCE_OBJECT’)
}

Figure 16: Logical form of a location child

The detailed action tree for each action and di-
alogue type has been presented in the following
subsections. Figure 17 shows an example for a
BUILD action.

0 1 2 3 4 5 6
"Make three oak wood houses to the
7 8 9 10 11 12
left of the dark grey church."

{"dialogue_type" "HUMAN_GIVE_COMMAND",
"action_sequence" : [
{
"action_type"
"schematic": {
"has_block_type": [0, [2,
"has_name": [0, [4, 411,
"repeat": {
"repeat_key": "FOR",
"repeat_count": [1, 1]
Py
"location": {
"relative_direction": "LEFT",
"location_type": "REFERENCE_OBJECT",

"BUILD",

"reference_object": {
"has_colour_": [0, [10, 11711,
"has_name_": [0, [12, 12]] }

BN

Figure 17: An example logical form. The spans are
indexed as : [sentence_number, [starting_word_index,
ending_word_index]]. sentence_number is 0 for the
most recent sentence spoken in a dialogue and is 0 in
our dataset since we support one-turn dialogues as of
now.

C.1 Build Action

This is the action to Build a schematic at an optional
location. The Build logical form is shown in 18 .

C.2 Copy Action

This is the action to copy a block object to an op-
tional location. The copy action is represented as a
”Build” with an optional “reference object” . The
logical form is shown in 19.

C.3 Spawn Action

This action indicates that the specified object
should be spawned in the environment. The logical
form is shown in: 20

C.4 Fill Action

This action states that a hole / negative shape at an
optional location needs to be filled up. The logical
form is explained in : 21

C.5 Destroy Action

This action indicates the intent to destroy a block
object at an optional location. The logical form is
shown in: 22

Destroy action can have one of the following as
the child:

e reference object

4708

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [

{"action_type" ’BUILD’,

LOCATION,

"schematic" : {

"repeat" : {

"repeat_key" : 'FOR’ / 'ALL’,
"repeat_count" : span,
"repeat_dir" : ‘LEFT’ / 'RIGHT’ /
"UP’/ 'DOWN’ / ’"FRONT’ /
"BACK’ / "AROUND’}

"has_name" : span,

"has_block_type" : span,

"has_size" : span,

"has_orientation" : span,

"has_thickness" : span,

"has_colour" : span,

"has_length": span,

"has_height" : span,

"has_radius" : span,

"has_slope" : span,

"has_width": span,

"has_base" : span,

"has_distance" : span,

I
"repeat" : {

"repeat_key" : 'FOR’ / 'ALL’,
"repeat_count" : span,
"repeat_dir" : 'LEFT’ / 'RIGHT’ /

"UP’/ 'DOWN’ / 'FRONT’ /
"BACK’ / ’AROUND’ }
bl

Figure 18: Details of logical form for Build

{ "dialogue_type" ’ HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [

{"action_type" ’BUILD’,

LOCATION,

REF_OBJ,

"repeat" : {

"repeat_key" : 'FOR’ / 'ALL’,
"repeat_count" : span,
"repeat_dir" : 'LEFT’ / ’'RIGHT’ /

"UP’/ '"DOWN’ / ’FRONT’ /
’BACK’ / ’"AROUND’ }
bl

Figure 19: Details of logical form for Copy

e nothing

C.6

This action states that the agent should move to the
specified location, the corresponding logical form
is in: 23

Move action can have one of the following as its
child:

Move Action

e location

e stop condition (stop moving when a condition
is met)

e location and stop condition

e neither

C.7 Dig Action

This action represents the intent to dig a hole / neg-
ative shape of optional dimensions at an optional
location. The logical form is in 24

{ "dialogue_type" : " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" : ’ SPAWN’ ,
LOCATION,
REF_OBJ }]
}

Figure 20: Details of logical form for Spawn action

{ "dialogue_type" : /HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : "FILL',
"has_block_type" : span,
REF_OBJ }]

Figure 21: Details of logical form for Fill

C.8 Dance Action

This action represents that the agent performs a
movement of a certain kind. Note that this action
is different than a Move action in that the path
or step-sequence here is more important than the
destination. The logical form is shown in 25

C.9 FreeBuild Action

This action represents that the agent should com-
plete an already existing half-finished block object,
using its mental model. The logical form is ex-
plained in: 26

FreeBuild action can have one of the following
as its child:

e reference object only

e reference object and location

C.10 Undo Action
This action states the intent to revert the specified
action, if any. The logical form is in 27. Undo
action can have on of the following as its child:

e target_action_type

e nothing (meaning : undo the last action)

C.11

This action indicates stop and the logical form is
shown in 28

Stop Action

C.12 Resume Action

This action indicates that the previous action should
be resumed, the logical form is shown in: 29

C.13

This dialogue type represents the agent answering
a question about the environment. This is similar
to the setup in Visual Question Answering. The
logical form is represented in: 30

Get Memory Dialogue type

4709

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [

{"action_type" "DESTROY’,

REF_OBJ }]

Figure 22: Details of logical form Destroy

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [

{"action_type" "MOVE',
LOCATION,
"stop_condition" : {

"condition_type":
" ADJACENT_TO_BLOCK_TYPE’ /
’'NEVER’ ,
"block_type": span,
"condition_span"
"repeat" : {
"repeat_key"
"repeat_count" span,
"repeat_dir" "LEFT’ / 'RIGHT’ /
'UP’/ 'DOWN’ / ’"FRONT’ /
"BACK’ / 'AROUND’}

span },

"FOR’ / 'ALL’,

bl

Figure 23: Details of logical form for Move action

Get Memory dialogue has the following as its
children: filters, answer type and tag name. This di-
alogue type represents the type of expected answer
: counting, querying a specific attribute or querying
everything ("what is the size of X” vs "what is X)

C.14 Put Memory Dialogue

This dialogue type represents that a reference ob-
ject should be tagged with the given tag and the
logical form is shown in: 31

C.15 Noop Dialogue

This dialogue type indicates no operation should
be performed, the logical form is shown in : 32

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" 'DIG’,
LOCATION,
"schematic" : {
"repeat" : {
"repeat_key"
"repeat_count" span,
"repeat_dir" "LEFT’ / '"RIGHT’ /
'UP’/ '"DOWN’ / "FRONT’ /
’"BACK’ / ’"AROUND’ }

'FOR’ / 'ALL’

"has_size" span,
"has_length": span,
"has_depth" span,
"has_width" span},

"stop_condition" : {
"condition_type"
" ADJACENT_TO_BLOCK_TYPE’ /s
' NEVER',
"block_type": span } }]

Figure 24: Details of logical form for Dig action

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" ' DANCE’ ,
LOCATION,
"stop_condition" : {
"condition_type"
"repeat: {
"repeat_key" : FOR,
"repeat_count" span } }]

" NEVER’ }

}
Figure 25: Details of logical form for Dance action

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" 'FREEBUILD’,
REF_OBJECT,
LOCATION }]

Figure 26: Logical form for Freebuild action

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" " UNDO’ ,
"target_action_type" span }]

Figure 27: Details of logical form for Undo action

{ "dialogue_type" " HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" ’STOP',
"target_action_type" span } 1]

Figure 28: Details of logical form for Stop action

{ "dialogue_type" ' HUMAN_GIVE_COMMAND’ ,
"action_sequence" : [
{"action_type" "RESUME’ ,
"target_action_type" span } 1]

}
Figure 29: Details of logical form for Resume action

{ "dialogue_type": "GET_MEMORY",
"filters": {"temporal": CURRENT,
"type": "ACTION" / "AGENT" /
"REFERENCE_OBJECT",
"action_type": BUILD / DESTROY / DIG /
FILL / SPAWN / MOVE

"reference_object" : {
LOCATION,
"has_size" span,
"has_colour" span,
"has_name" span,
"coref_resolve": span}},

"answer_type": "TAG" / "EXISTS" ,
"tag_name" "has_name’ / "has_size’ /
"has_colour’ / ’"action_name’ /

’action_reference_object_name’ /
'move_target’ / ’location’ ,
"replace": true

}
Figure 30: Logical form for Get Memory Dialogue

4710

{ "dialogue_type": "PUT_MEMORY"
"filters": { REF_OBJECT },
"upsert" : {

"memory_data": {
"memory_type": "REWARD" / "TRIPLE",
"reward_value": "POSITIVE" /

"NEGATIVE",
"has_tag" : span,
"has_colour": span,
"has_size": span

b}

}

Figure 31: Details of logical form for Put Memory Di-
alogue

{ "dialogue_type": "NOOP" }

Figure 32: Details of logical form for Noop Dialogue

4711

D Crowd-sourced task and tools
instructions

Some examples from prompts data

bot move the tree to the left side of
the house
{"action_sequence’: [{
"action_type’: ’OTHERACTION’,
"location’: {
"location_type’: ’REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [10, 1011},
"relative_direction’: ’"LEFT’},
"reference_object’: {
"has_name’: [0, [3, 3]11}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

dig a hole next to that house
{"action_sequence’: [{
"action_type’: ’'DIG’,
"location’: {
’location_type’: 'REFERENCE_OBJECT’,
"reference_object’: {
"contains_coreference’: ’'yes’,
"has_name’: [0, [6, 6]1},
"relative_direction’: ’"NEAR’},
"schematic’: {
"has_name’: [0, [2, 2]1}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

how about you copy the crops i planted
to fill this whole plain
{"action_sequence’ : [{
"action_type’: ’BUILD’,
"reference_object’: {
"has_name’: [0, [5, 511,
"has_tag’: [0, [6, 711}
"repeat’: {
’"stop_condition’: {
"condition_span’: [0, [9, 12]1}}1}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

’

make sure i1 spawn on top of the pyramid
each time
{"action_sequence’ : [{
"action_type’: 'OTHERACTION’,
"location’: {
"location_type’: "REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [8, 811},
"relative_direction’: "UP’},
"reference_object’: {
"has_name’: [0, [2, 211},
"repeat’: {’stop_condition’: {’
condition_type’: "NEVER’}}}],
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

complete the structure 10 meters west
from your position
{"action_sequence’: [{
"action_type’: 'FREEBUILD’,
"reference_object’: {
"has_name’: [0, [2, 21],
"location’: {
’location_type’: ’AGENT_POS’,
"relative_direction’: ’"LEFT’,
"steps’: [0, [3, 311}}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

destroy the structure that is blocking
the view of the landscape
{’action_sequence’: [{
"action_type’: 'DESTROY’,
"reference_object’: {
"has_name’ : [0, [2, 21],
"has_tag’: [0, [5, 1011}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

complete the project that i1 am working
on by building more devices
{’action_sequence’: [{
"action_type’: 'FREEBUILD’,
"reference_object’ : {
"has_name’: [0, [2, 211,
"has_tag’: [0, [4, T11}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

show me how to dance
{’action_sequence’: [{

"action_type’: 'DANCE’}],
"dialogue_type’ : ’HUMAN_GIVE_COMMAND’ }

please build a garden
{"action_sequence’: [{
"action_type’: ’BUILD’,
’schematic’: {
"has_name’: [0, [3, 311}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

fill the small pond with sand
{’action_sequence’: [{
"action_type’: 'FILL’,
"has_block_type’: [0, [5, 511,
"reference_object’: {
"has_name’: [0, [3, 311,
"has_size’: [0, [2, 2]11}}1,
"dialogue_type’ : 'HUMAN_GIVE_COMMAND’ }

move north for 5 minutes
{’action_sequence’: [{
"action_type’: "MOVE’,
"location’: {
"location_type’:
"relative_direction’:
"repeat’: {
"stop_condition’: {
"condition_span’: [0, [3, 411}}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

" AGENT_POS',
" FRONT' },

dig a hole next to the sidewalk of the
school
{’action_sequence’: [{
"action_type’: ’'DIG’,
"location’ : {
"location_type’: 'REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [6, 911},
"relative_direction’: ’"NEAR’},
’schematic’: {"has_name’: [0, [2,
21111,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }
move to the right until you ca n’t
anymore
{"action_sequence’: [{
"action_type’: "MOVE’,
"location’ : {

"location_type’: ’SPEAKER_POS’,

4712

"relative_direction’:
"repeat’: {
"stop_condition’: {
"condition_span’: [0, [4, 811}}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

"RIGHT' },

move up the hill
{"action_sequence’: [{
"action_type’: "MOVE’,
"location’ : {
"location_type’: ’REFERENCE_OBJECT',
"reference_object’: {
"has_name’: [0, [3, 311},
"relative_direction’: "UP’}}],
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

build a bridge over the lava
{"action_sequence’ : [{
"action_type’: ’BUILD’,
"location’ : {
"location_type’: ’REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [5, 511},
"relative_direction’: 'UP’},
"schematic’: {"has_name’: [0, [2,
21110,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }
this pyramid is 5 platforms tall
{"dialogue_type’: ’"NOOP’}

spawn 30 cows and build a 15 by 15 fence
{"action_sequence’: [
{
"action_type’: ’SPAWN’,
"reference_object’: {
"has_name’: [0, [2, 2]1},
"repeat’: {
"repeat_count’: [0, [1, 111,
"repeat_key’: 'FOR’}},
{
"action_type’:
"schematic’: {
"has_height’: [0, [2, 211,
"has_name’: [0, [5, 5]1}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

"BUILD',

move three feet forward and stop
{"action_sequence’: [{
"action_type’: "MOVE’,
"location’: {
"location_type’: "AGENT_POS’,
"relative_direction’: ’"FRONT’,
"steps’: [0, [1, 2]1}}1,
"dialogue_type’ : ’HUMAN_GIVE_COMMAND’ }

destroy the building that ’'s in front of
you
{"action_sequence’ : [{
"action_type’: 'DESTROY’,
"reference_object’: {
"has_name’: [0, [2, 211,
"location’: {
"location_type’: ’AGENT_POS’,
"relative_direction’: "FRONT’ }}1}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

tag the horse armor
{’dialogue_type’: ’PUT_MEMORY’,
rfilters’: {

"reference_object’: {
"has_name’ : [0, [2, 3]11}}}

bot build it to fit into the open frame
{’action_sequence’: [{
"action_type’: ’'BUILD’,
’schematic’: {
"has_name’: [0, [2, 211,
"has_tag’: [0, [4, 811}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

destroy the hut near the big tree
{’action_sequence’: [{
"action_type’: 'DESTROY’,
"reference_object’: {
"has_name’: [0, [2, 2]1}}1,
"dialogue_type’ : ’'HUMAN_GIVE_COMMAND’ }

move the rabbit into the box
{"action_sequence’: [{
"action_type’: 'OTHERACTION’,
"location’: {
"location_type’: ’'REFERENCE_OBJECT’,
"reference_object’: {

"has_name’: [0, [5, 511},
"relative_direction’: "INSIDE’},
"reference_object’: {’has_name’: [0,

(2, 211},
"dialogue_type’ : 'HUMAN_GIVE_COMMAND’ }
fill the entire tub with pepsi
{"action_sequence’: [{
"action_type’: 'FILL',
"has_block_type’: [0, [5, 511,
"reference_object’: {
"has_name’ : [0, [3, 311}1}1,
"dialogue_type’ : 'HUMAN_GIVE_COMMAND’ }

stop digging
{"action_sequence’: [{
"action_type’: ’STOP’,
"target_action_type’: [0, [1, 111}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

destroy the box
{’action_sequence’: [{
"action_type’: 'DESTROY’,
"reference_object’: {
"has_name’: [0, [2, 2]11}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

let s resume our mission of traveling
over that treacherous mountain pass
{’action_sequence’: [{
"action_type’: 'RESUME’,
"target_action_type’: [0, [3, 1111}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

build a house with a porch next to the
pyramid
{"action_sequence’: [{
"action_type’: ’BUILD’,
"location’ : {
"location_type’: ’'REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [9, 911},
"relative_direction’: ’"NEAR’},
’schematic’ : {
"has_name’ : [0, [2, 2
]

1/
"has_tag’: [0, [3, 511}}1,

4713

"dialogue_type’: ’HUMAN_GIVE_COMMAND' }
build stairs in the corner
{"action_sequence’: [{
"action_type’: ’BUILD’,
"location’: {
"location_type’: ’REFERENCE_OBJECT’,
"reference_object’: {

"has_name’: [0, [4, 411}},
"schematic’: {
"has_name’: [0, [1, 111}}1,

"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }
spawn milk
{"action_sequence’: [{
"action_type’: ’SPAWN’,
"reference_object’: {
"has_name’: [0, [1, 111}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

build a wall to divide the largest room
in the house
{"action_sequence’: [{
"action_type’: ’'BUILD’,
"location’: {
"location_type’: 'REFERENCE_OBJECT’,
"reference_object’: {
"has_name’: [0, [6,
"relative_direction’:
"schematic’ :
211110,
"dialogue_type’:

10111},
"INSIDE’ },
{"has_name’: [0, [2,

" HUMAN_GIVE_COMMAND’ }

build foundation
{"action_sequence’ :

[{

"action_type’: ’'BUILD’,
"schematic’: {
"has_name’: [0, [1, 1]11}}1,

"dialogue_type’: ’HUMAN_GIVE_COMMAND' }
please change the barn to a shop
{"action_sequence’: [{
"action_type’: "OTHERACTION’,
"reference_object’: {
"has_name’: [0, [3, 3]11}}1,
"dialogue_type’: ’HUMAN_GIVE_COMMAND' }

copy the loaf of bread 100 times for
distribution to the assembled army
in front of you
{"action_sequence’: [{
"action_type’: ’BUILD’,
"reference_object’: {

"has_name’: [0, [2, 411},
"repeat’: {

"repeat_count’: [0, [5, 511,

"repeat_key’: 'FOR’ }}1,

"dialogue_type’: ’HUMAN_GIVE_COMMAND' }
spawn fifteen horses
{"action_sequence’ : [{
"action_type’: ’SPAWN’,
"reference_object’: {

"has_name’: [0, [2, 211},
"repeat’: {

"repeat_count’: [0, [1, 111,

"repeat_key’: 'FOR’}1}1,

"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

dance

4714

{’action_sequence’: [{
"action_type’: 'DANCE’}],
"dialogue_type’: ’HUMAN_GIVE_COMMAND’ }

dig a hole beneath the fence on the west
side of the prison yard big enough
for a person to crawl through
{"action_sequence’: [{
"action_type’: ’'DIG’,
"location’ : {
"location_type’: 'REFERENCE_OBJECT',
"reference_object’: {

"has_name’: [0, [5, 1311},
"relative_direction’: ’"DOWN’},
"repeat’ : {
"stop_condition’ : {
"condition_span’: [0, [14, 21]1]1}},

’schematic’: {
"has_name’ : [0,
"dialogue_type’:

(2, 211411,
" HUMAN_GIVE_COMMAND’ }

