





Figure 1: Accuracy Gap of Roberta, BILSTM trained on different amount of data

Yel Sports Electronics
Models Accuracyp A Accur:cy A Accuracy A Params
Roberta-Large 78.85 - 79.65 - 79.07 - 304M
Roberta-Base 78.44 0.41 79.45 0.20 78.84 023 | 86M
LSTM-4-512 + Large 77.14 1.71 78.80 0.85 78.16 092 | 25M
LSTM-4-512 + Base 77.07 1.78 78.72 0.93 78.07 1.0 24M
LSTM-4-256 + Large 77.02 1.83 78.76 0.89 78.12 095 | 7.4M
LSTM-4-256 + Base 77.03 1.82 78.62 1.03 77.98 1.09 | 6.8M
LSTM-4-256 76.37 2.48 78.38 1.27 77.76 1.31 | 4.8M
LSTM-2-256 76.09 2.76 78.18 1.47 77.57 1.5 | 24M

Table 2: Test Accuracy of Roberta-base, BILSTM, and BiLSTM with Roberta Pretrained Token Embedding when
trained on the full dataset. The A column shows the difference between each model’s accuracy and that of Roberta-
Large. For LSTM models, LSTM-n-k denotes an LSTM model with n layers and k cells. + Large or + Base
indicate the use of Roberta Large or Roberta Base token embeddings, respectively. The number of parameters does

not count the size of embedding table.

decay to 0. The batch size is set to 32, with
dropout being 0.1. (ii) For the LSTM, it is trained
with a constant learning rate from the sequence:
{2.5e — 4,5¢ — 4,7.5¢ — 4,1e — 3}. The batch
size is set to 64. We train each model on 8 GPUs
for 10 epochs and perform early stopping based on
accuracy on the test set. The maximum sequence
length of input was set to 512 for all models.

4 Results

4.1 Impact of Data Size

We first investigate the effect of varying the num-
ber of training samples, for fixed model and train-
ing procedure. We train different models using
{1%, 10%, 30%, 50%, 70%, 90%} amount of data
to mimic the “low-resource”, “medium-resource”
and “high-resource” regime. Figure 1 shows
that the accuracy delta between the LSTM and

RoBERTa models at different percentages of the

training data. From the plot, we observe the follow-
ing phenomena:

(i) Pretrained models exhibit a diminishing re-
turn behavior as the size of the target data grows.
When we increase the number of training exam-
ples, the accuracy gap between Roberta and LSTM
shrinks. For example, when both models are
trained with 1% of the Yelp dataset, the accuracy
gap is around 9%. However, as we increases the
amount of training data to 90%, the accuracy gap
drops to within 2%. The same behaviour is ob-
served on both Amazon review datasets, with the
initial gap starting at almost 5% for 1% of the train-
ing data, then shrinking all the way to within one
point when most of the training data is used.

(i1) Using the pretrained RoBERTa token em-
beddings can further reduce the accuracy gap espe-
cially when training data is limited. For example,
in the Yelp review data, a 4-layers LSTM with
pretrained embeddings provides additional 3 per-
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cent gain compared to its counterparts. As Table 2
shows, an LSTM with pretrained RoOBERTa token
embeddings always outperforms the ones with ran-
dom token initialization. This suggests that the em-
beddings learned during pretraining ROBERTa may
constitute an efficient approach for transfer learn-
ing the knowledge learned in these large MLM.

We further report the accuracy metric of each
model using all the training data. The full results
are listed in Table 2. We observe that the accuracy
gap is less than 1% on the Amazon datasets. even
compared to 24 layers RoOBERTa-large model. As
for the Yelp dataset, the accuracy gap is within 2
percent from the RoBERTa-large model, despite
an order of magnitude difference in the number of
parameters.

4.2 Inference Time

We also investigate the inference time of the three
type of models on GPU and CPU. The CPU in-
ference time is tested on Intel Xeon E5-2698 v4
with batch size 128. The GPU inference time is
tested on NVIDIA Quadro P100 with batch size
€ {128,256, 384}. The maximum sequence length
is 512. We run 30 times for each settings and take
the average. The results are listed in TABLE 3.

Model CPU GPU

Batch size 128 128 256 384
Roberta-Base 323  16.1 16.1 16.1
Roberta-Large 950 555 555 -
LSTM-2-256 152 047 043 042
LSTM-4-256 28.1 1.17 094 0.86
LSTM-4-256+Base 352 1.33 1.09 1.02
LSTM-4-256+Large 37.5 133 1.17 1.07
LSTM-4-512+Base = 64.8 3.52 320 3.13
LSTM-4-512+Large 64.8 3.36 3.32 3.26

Table 3: Inference time (ms) of Roberta, BILSTM on
CPU and GPU

Not surprisingly, the LSTM model is at least 20
time faster even when compared to the Roberta-
Base. Note that the P100 will be out of memory
when batch size is 384 for Roberta-Large. Another
observation is that although using the Roberta pre-
trained token embedding introduces 10 times more
model parameters compared to vanilla BiLSTM,
the inference time only increases by less than 25%.
This is due to the most additional parameters are
from a simple linear transformation.

5 Discussion

Our findings in this paper indicate that increas-
ing the number of training examples for ‘standard’
models such as LSTM leads to performance gains
that are within 1 percent of their massively pre-
trained counterparts. Due to the fact that there is
no good large scale question answering dataset, it
is not clear if the same findings would hold on this
type of NLP tasks, which are more challenging
and semantic-based. In the future work, we will
run more experiments if there are some other large
scale open datasets. Despite sentiment analysis be-
ing a crucial text classification task, it is possible,
though unlikely, that the patterns observed here are
limited to sentiment analysis tasks only. The ratio-
nale behinds that is that pretrained LSTMs have
kept up very well with transformer-based counter-
parts on many tasks (Radford et al.).

One way to interpret our results is that ‘sim-
ple’ models have better regularization effect when
trained on large amount of data, as also evidenced
in the concurrent work (Nakkiran and Sutskever,
2020).The other side of the argument in interpret-
ing our results is that MLM based pretraining still
leads to improvements even as the data size scales
into the millions. In fact, with a pretrained model
and 2 million training examples, it is possible to
outperform an LSTM model that is trained with 3 x
more examples.

6 Conclusion

Finetuning BERT-style models on resource-rich
downstream tasks is not well studied. In this pa-
per, we reported that, when the downstream task
has sufficiently large amount of training exampes,
i.e., millions, competitive accuracy results can be
achieved by training a simple LSTM, at least for
text classification tasks. We further discover that
reusing the token embeddings learned during BERT
pretraining in an LSTM model leads to significant
improvements. The findings of this work have sig-
nificant implications on both the practical aspect as
well as the research on pretraining. For industrial
applications where there is a trade-off typically be-
tween accuracy and latency, our findings suggest it
might be feasible to gain accuracy for faster models
by collecting more training examples.
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